icefall/icefall/context_graph.py
zr_jin ef5da4824d
formatted the entire LibriSpeech recipe (#1270)
* formatted the entire librispeech recipe

* minor updates
2023-09-24 17:31:01 +08:00

401 lines
13 KiB
Python

# Copyright 2023 Xiaomi Corp. (authors: Wei Kang)
#
# See ../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
from collections import deque
from typing import Dict, List, Optional, Tuple
class ContextState:
"""The state in ContextGraph"""
def __init__(
self,
id: int,
token: int,
token_score: float,
node_score: float,
output_score: float,
is_end: bool,
):
"""Create a ContextState.
Args:
id:
The node id, only for visualization now. A node is in [0, graph.num_nodes).
The id of the root node is always 0.
token:
The token id.
token_score:
The bonus for each token during decoding, which will hopefully
boost the token up to survive beam search.
node_score:
The accumulated bonus from root of graph to current node, it will be
used to calculate the score for fail arc.
output_score:
The total scores of matched phrases, sum of the node_score of all
the output node for current node.
is_end:
True if current token is the end of a context.
"""
self.id = id
self.token = token
self.token_score = token_score
self.node_score = node_score
self.output_score = output_score
self.is_end = is_end
self.next = {}
self.fail = None
self.output = None
class ContextGraph:
"""The ContextGraph is modified from Aho-Corasick which is mainly
a Trie with a fail arc for each node.
See https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm for more details
of Aho-Corasick algorithm.
A ContextGraph contains some words / phrases that we expect to boost their
scores during decoding. If the substring of a decoded sequence matches the word / phrase
in the ContextGraph, we will give the decoded sequence a bonus to make it survive
beam search.
"""
def __init__(self, context_score: float):
"""Initialize a ContextGraph with the given ``context_score``.
A root node will be created (**NOTE:** the token of root is hardcoded to -1).
Args:
context_score:
The bonus score for each token(note: NOT for each word/phrase, it means longer
word/phrase will have larger bonus score, they have to be matched though).
"""
self.context_score = context_score
self.num_nodes = 0
self.root = ContextState(
id=self.num_nodes,
token=-1,
token_score=0,
node_score=0,
output_score=0,
is_end=False,
)
self.root.fail = self.root
def _fill_fail_output(self):
"""This function fills the fail arc for each trie node, it can be computed
in linear time by performing a breadth-first search starting from the root.
See https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm for the
details of the algorithm.
"""
queue = deque()
for token, node in self.root.next.items():
node.fail = self.root
queue.append(node)
while queue:
current_node = queue.popleft()
for token, node in current_node.next.items():
fail = current_node.fail
if token in fail.next:
fail = fail.next[token]
else:
fail = fail.fail
while token not in fail.next:
fail = fail.fail
if fail.token == -1: # root
break
if token in fail.next:
fail = fail.next[token]
node.fail = fail
# fill the output arc
output = node.fail
while not output.is_end:
output = output.fail
if output.token == -1: # root
output = None
break
node.output = output
node.output_score += 0 if output is None else output.output_score
queue.append(node)
def build(self, token_ids: List[List[int]]):
"""Build the ContextGraph from a list of token list.
It first build a trie from the given token lists, then fill the fail arc
for each trie node.
See https://en.wikipedia.org/wiki/Trie for how to build a trie.
Args:
token_ids:
The given token lists to build the ContextGraph, it is a list of token list,
each token list contains the token ids for a word/phrase. The token id
could be an id of a char (modeling with single Chinese char) or an id
of a BPE (modeling with BPEs).
"""
for tokens in token_ids:
node = self.root
for i, token in enumerate(tokens):
if token not in node.next:
self.num_nodes += 1
is_end = i == len(tokens) - 1
node_score = node.node_score + self.context_score
node.next[token] = ContextState(
id=self.num_nodes,
token=token,
token_score=self.context_score,
node_score=node_score,
output_score=node_score if is_end else 0,
is_end=is_end,
)
node = node.next[token]
self._fill_fail_output()
def forward_one_step(
self, state: ContextState, token: int
) -> Tuple[float, ContextState]:
"""Search the graph with given state and token.
Args:
state:
The given token containing trie node to start.
token:
The given token.
Returns:
Return a tuple of score and next state.
"""
node = None
score = 0
# token matched
if token in state.next:
node = state.next[token]
score = node.token_score
else:
# token not matched
# We will trace along the fail arc until it matches the token or reaching
# root of the graph.
node = state.fail
while token not in node.next:
node = node.fail
if node.token == -1: # root
break
if token in node.next:
node = node.next[token]
# The score of the fail path
score = node.node_score - state.node_score
assert node is not None
return (score + node.output_score, node)
def finalize(self, state: ContextState) -> Tuple[float, ContextState]:
"""When reaching the end of the decoded sequence, we need to finalize
the matching, the purpose is to subtract the added bonus score for the
state that is not the end of a word/phrase.
Args:
state:
The given state(trie node).
Returns:
Return a tuple of score and next state. If state is the end of a word/phrase
the score is zero, otherwise the score is the score of a implicit fail arc
to root. The next state is always root.
"""
# The score of the fail arc
score = -state.node_score
return (score, self.root)
def draw(
self,
title: Optional[str] = None,
filename: Optional[str] = "",
symbol_table: Optional[Dict[int, str]] = None,
) -> "Digraph": # noqa
"""Visualize a ContextGraph via graphviz.
Render ContextGraph as an image via graphviz, and return the Digraph object;
and optionally save to file `filename`.
`filename` must have a suffix that graphviz understands, such as
`pdf`, `svg` or `png`.
Note:
You need to install graphviz to use this function::
pip install graphviz
Args:
title:
Title to be displayed in image, e.g. 'A simple FSA example'
filename:
Filename to (optionally) save to, e.g. 'foo.png', 'foo.svg',
'foo.png' (must have a suffix that graphviz understands).
symbol_table:
Map the token ids to symbols.
Returns:
A Diagraph from grahpviz.
"""
try:
import graphviz
except Exception:
print("You cannot use `to_dot` unless the graphviz package is installed.")
raise
graph_attr = {
"rankdir": "LR",
"size": "8.5,11",
"center": "1",
"orientation": "Portrait",
"ranksep": "0.4",
"nodesep": "0.25",
}
if title is not None:
graph_attr["label"] = title
default_node_attr = {
"shape": "circle",
"style": "bold",
"fontsize": "14",
}
final_state_attr = {
"shape": "doublecircle",
"style": "bold",
"fontsize": "14",
}
final_state = -1
dot = graphviz.Digraph(name="Context Graph", graph_attr=graph_attr)
seen = set()
queue = deque()
queue.append(self.root)
# root id is always 0
dot.node("0", label="0", **default_node_attr)
dot.edge("0", "0", color="red")
seen.add(0)
while len(queue):
current_node = queue.popleft()
for token, node in current_node.next.items():
if node.id not in seen:
node_score = f"{node.node_score:.2f}".rstrip("0").rstrip(".")
output_score = f"{node.output_score:.2f}".rstrip("0").rstrip(".")
label = f"{node.id}/({node_score}, {output_score})"
if node.is_end:
dot.node(str(node.id), label=label, **final_state_attr)
else:
dot.node(str(node.id), label=label, **default_node_attr)
seen.add(node.id)
weight = f"{node.token_score:.2f}".rstrip("0").rstrip(".")
label = str(token) if symbol_table is None else symbol_table[token]
dot.edge(str(current_node.id), str(node.id), label=f"{label}/{weight}")
dot.edge(
str(node.id),
str(node.fail.id),
color="red",
)
if node.output is not None:
dot.edge(
str(node.id),
str(node.output.id),
color="green",
)
queue.append(node)
if filename:
_, extension = os.path.splitext(filename)
if extension == "" or extension[0] != ".":
raise ValueError(
"Filename needs to have a suffix like .png, .pdf, .svg: {}".format(
filename
)
)
import tempfile
with tempfile.TemporaryDirectory() as tmp_dir:
temp_fn = dot.render(
filename="temp",
directory=tmp_dir,
format=extension[1:],
cleanup=True,
)
shutil.move(temp_fn, filename)
return dot
if __name__ == "__main__":
contexts_str = [
"S",
"HE",
"SHE",
"SHELL",
"HIS",
"HERS",
"HELLO",
"THIS",
"THEM",
]
contexts = []
for s in contexts_str:
contexts.append([ord(x) for x in s])
context_graph = ContextGraph(context_score=1)
context_graph.build(contexts)
symbol_table = {}
for contexts in contexts_str:
for s in contexts:
symbol_table[ord(s)] = s
context_graph.draw(
title="Graph for: " + " / ".join(contexts_str),
filename="context_graph.pdf",
symbol_table=symbol_table,
)
queries = {
"HEHERSHE": 14, # "HE", "HE", "HERS", "S", "SHE", "HE"
"HERSHE": 12, # "HE", "HERS", "S", "SHE", "HE"
"HISHE": 9, # "HIS", "S", "SHE", "HE"
"SHED": 6, # "S", "SHE", "HE"
"SHELF": 6, # "S", "SHE", "HE"
"HELL": 2, # "HE"
"HELLO": 7, # "HE", "HELLO"
"DHRHISQ": 4, # "HIS", "S"
"THEN": 2, # "HE"
}
for query, expected_score in queries.items():
total_scores = 0
state = context_graph.root
for q in query:
score, state = context_graph.forward_one_step(state, ord(q))
total_scores += score
score, state = context_graph.finalize(state)
assert state.token == -1, state.token
total_scores += score
assert total_scores == expected_score, (
total_scores,
expected_score,
query,
)