2024-07-03 22:04:23 +08:00

124 lines
3.6 KiB
Python

# Copyright 2021-2024 Xiaomi Corp. (authors: Fangjun Kuang,
# Zengrui Jin,
# Yifan Yang,)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from scaling import Balancer
class Decoder(nn.Module):
"""LSTM decoder."""
def __init__(
self,
vocab_size: int,
blank_id: int,
decoder_dim: int,
num_layers: int,
hidden_dim: int,
embedding_dropout: float = 0.0,
rnn_dropout: float = 0.0,
):
"""
Args:
vocab_size:
Number of tokens of the modeling unit including blank.
blank_id:
The ID of the blank symbol.
decoder_dim:
Dimension of the input embedding.
num_layers:
Number of LSTM layers.
hidden_dim:
Hidden dimension of LSTM layers.
embedding_dropout:
Dropout rate for the embedding layer.
rnn_dropout:
Dropout for LSTM layers.
"""
super().__init__()
self.embedding = nn.Embedding(
num_embeddings=vocab_size,
decoder_dim=decoder_dim,
)
# the balancers are to avoid any drift in the magnitude of the
# embeddings, which would interact badly with parameter averaging.
self.balancer = Balancer(
decoder_dim,
channel_dim=-1,
min_positive=0.0,
max_positive=1.0,
min_abs=0.5,
max_abs=1.0,
prob=0.05,
)
self.blank_id = blank_id
self.vocab_size = vocab_size
# self.embedding_dropout = nn.Dropout(embedding_dropout)
self.rnn = nn.LSTM(
input_size=decoder_dim,
hidden_size=hidden_dim,
num_layers=num_layers,
batch_first=True,
dropout=rnn_dropout,
)
self.balancer2 = Balancer(
decoder_dim,
channel_dim=-1,
min_positive=0.0,
max_positive=1.0,
min_abs=0.5,
max_abs=1.0,
prob=0.05,
)
def forward(
self,
y: torch.Tensor,
states: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
"""
Args:
y:
A 2-D tensor of shape (N, U).
Returns:
Return a tensor of shape (N, U, decoder_dim).
"""
y = y.to(torch.int64)
# this stuff about clamp() is a temporary fix for a mismatch
# at utterance start, we use negative ids in beam_search.py
embedding_out = self.embedding(y.clamp(min=0)) * (y >= 0).unsqueeze(-1)
embedding_out = self.balancer(embedding_out)
rnn_out, (h, c) = self.rnn(embedding_out, states)
rnn_out = F.relu(rnn_out)
rnn_out = self.balancer2(rnn_out)
return rnn_out, (h, c)