mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
565 lines
18 KiB
Python
Executable File
565 lines
18 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
|
# Liyong Guo,
|
|
# Quandong Wang,
|
|
# Zengwei Yao,
|
|
# Zhifeng Han,)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Usage:
|
|
|
|
(1) ctc-greedy-search (with cr-ctc)
|
|
./zipformer/ctc_decode.py \
|
|
--epoch 60 \
|
|
--avg 28 \
|
|
--exp-dir ./zipformer/exp \
|
|
--use-cr-ctc 1 \
|
|
--use-ctc 1 \
|
|
--use-transducer 0 \
|
|
--max-duration 600 \
|
|
--decoding-method ctc-greedy-search
|
|
(2) ctc-prefix-beam-search (with cr-ctc)
|
|
./zipformer/ctc_decode.py \
|
|
--epoch 60 \
|
|
--avg 21 \
|
|
--exp-dir zipformer/exp \
|
|
--use-cr-ctc 1 \
|
|
--use-ctc 1 \
|
|
--use-transducer 0 \
|
|
--max-duration 600 \
|
|
--decoding-method ctc-prefix-beam-search
|
|
"""
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
import os
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
import k2
|
|
import torch
|
|
import torch.nn as nn
|
|
from asr_datamodule import AishellAsrDataModule
|
|
from lhotse.cut import Cut
|
|
from train import add_model_arguments, get_model, get_params
|
|
|
|
from icefall.checkpoint import (
|
|
average_checkpoints,
|
|
average_checkpoints_with_averaged_model,
|
|
find_checkpoints,
|
|
load_checkpoint,
|
|
)
|
|
from icefall.decode import (
|
|
ctc_greedy_search,
|
|
ctc_prefix_beam_search,
|
|
)
|
|
from icefall.lexicon import Lexicon
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
make_pad_mask,
|
|
setup_logger,
|
|
store_transcripts,
|
|
str2bool,
|
|
write_error_stats,
|
|
)
|
|
|
|
LOG_EPS = math.log(1e-10)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=30,
|
|
help="""It specifies the checkpoint to use for decoding.
|
|
Note: Epoch counts from 1.
|
|
You can specify --avg to use more checkpoints for model averaging.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--iter",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --epoch is ignored and it
|
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
You can specify --avg to use more checkpoints for model averaging.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=15,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch' and '--iter'",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-averaged-model",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to load averaged model. Currently it only supports "
|
|
"using --epoch. If True, it would decode with the averaged model "
|
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
"Actually only the models with epoch number of `epoch-avg` and "
|
|
"`epoch` are loaded for averaging. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="zipformer/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lang-dir",
|
|
type=Path,
|
|
default="data/lang_char",
|
|
help="The lang dir containing word table and LG graph",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--decoding-method",
|
|
type=str,
|
|
default="ctc-greedy-search",
|
|
help="""Decoding method.
|
|
Supported values are:
|
|
- (1) ctc-greedy-search. Use CTC greedy search. It uses a sentence piece
|
|
model, i.e., lang_dir/bpe.model, to convert word pieces to words.
|
|
It needs neither a lexicon nor an n-gram LM.
|
|
(2) ctc-prefix-beam-search. Extract n paths with the given beam, the best
|
|
path of the n paths is the decoding result.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--context-size",
|
|
type=int,
|
|
default=2,
|
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def get_decoding_params() -> AttributeDict:
|
|
"""Parameters for decoding."""
|
|
params = AttributeDict(
|
|
{
|
|
"frame_shift_ms": 10,
|
|
"search_beam": 20, # for k2 fsa composition
|
|
"output_beam": 8, # for k2 fsa composition
|
|
"min_active_states": 30,
|
|
"max_active_states": 10000,
|
|
"use_double_scores": True,
|
|
"beam": 4, # for prefix-beam-search
|
|
}
|
|
)
|
|
return params
|
|
|
|
def decode_one_batch(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
lexicon: Lexicon,
|
|
batch: dict,
|
|
) -> Dict[str, Tuple[List[List[str]], List[List[Tuple[float, float]]]]]:
|
|
"""Decode one batch and return the result in a dict. The dict has the
|
|
following format:
|
|
|
|
- key: It indicates the setting used for decoding. For example,
|
|
if greedy_search is used, it would be "greedy_search"
|
|
If beam search with a beam size of 7 is used, it would be
|
|
"beam_7"
|
|
- value: It contains the decoding result. `len(value)` equals to
|
|
batch size. `value[i]` is the decoding result for the i-th
|
|
utterance in the given batch.
|
|
Args:
|
|
params:
|
|
It's the return value of :func:`get_params`.
|
|
model:
|
|
The neural model.
|
|
batch:
|
|
It is the return value from iterating
|
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
|
for the format of the `batch`.
|
|
Returns:
|
|
Return the decoding result. See above description for the format of
|
|
the returned dict.
|
|
"""
|
|
device = next(model.parameters()).device
|
|
feature = batch["inputs"]
|
|
assert feature.ndim == 3
|
|
|
|
feature = feature.to(device)
|
|
# at entry, feature is (N, T, C)
|
|
|
|
supervisions = batch["supervisions"]
|
|
feature_lens = supervisions["num_frames"].to(device)
|
|
|
|
if params.causal:
|
|
# this seems to cause insertions at the end of the utterance if used with zipformer.
|
|
pad_len = 30
|
|
feature_lens += pad_len
|
|
feature = torch.nn.functional.pad(
|
|
feature,
|
|
pad=(0, 0, 0, pad_len),
|
|
value=LOG_EPS,
|
|
)
|
|
|
|
x, x_lens = model.encoder_embed(feature, feature_lens)
|
|
|
|
src_key_padding_mask = make_pad_mask(x_lens)
|
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
|
|
|
encoder_out, encoder_out_lens = model.encoder(x, x_lens, src_key_padding_mask)
|
|
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
|
|
|
ctc_output = model.ctc_output(encoder_out) # (N, T, C)
|
|
|
|
hyp_tokens = []
|
|
hyps = []
|
|
|
|
if params.decoding_method == "ctc-greedy-search":
|
|
hyp_tokens = ctc_greedy_search(
|
|
ctc_output=ctc_output,
|
|
encoder_out_lens=encoder_out_lens,
|
|
)
|
|
elif params.decoding_method == "ctc-prefix-beam-search":
|
|
hyp_tokens = ctc_prefix_beam_search(
|
|
ctc_output=ctc_output,
|
|
encoder_out_lens=encoder_out_lens,
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported decoding method: {params.decoding_method}"
|
|
)
|
|
|
|
for i in range(encoder_out.size(0)):
|
|
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
|
|
|
if params.decoding_method == "ctc-greedy-search":
|
|
return {"ctc-greedy-search" : hyps}
|
|
elif params.decoding_method == "ctc-prefix-beam-search":
|
|
return {"ctc-prefix-beam-search" : hyps}
|
|
else:
|
|
assert False, f"Unsupported decoding method: {params.decoding_method}"
|
|
|
|
|
|
def decode_dataset(
|
|
dl: torch.utils.data.DataLoader,
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
lexicon: Lexicon,
|
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
|
"""Decode dataset.
|
|
|
|
Args:
|
|
dl:
|
|
PyTorch's dataloader containing the dataset to decode.
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The neural model.
|
|
Returns:
|
|
Return a dict, whose key may be "greedy_search" if greedy search
|
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
|
Its value is a list of tuples. Each tuple contains 3 elements:
|
|
Respectively, they are cut_id, the reference transcript, and the predicted result.
|
|
"""
|
|
num_cuts = 0
|
|
|
|
try:
|
|
num_batches = len(dl)
|
|
except TypeError:
|
|
num_batches = "?"
|
|
|
|
log_interval = 20
|
|
|
|
results = defaultdict(list)
|
|
for batch_idx, batch in enumerate(dl):
|
|
texts = batch["supervisions"]["text"]
|
|
texts = [list("".join(text.split())) for text in texts]
|
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
|
|
|
hyps_dict = decode_one_batch(
|
|
params=params,
|
|
model=model,
|
|
lexicon=lexicon,
|
|
batch=batch,
|
|
)
|
|
for name, hyps in hyps_dict.items():
|
|
this_batch = []
|
|
assert len(hyps) == len(texts)
|
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
|
this_batch.append((cut_id, ref_text, hyp_words))
|
|
results[name].extend(this_batch)
|
|
|
|
num_cuts += len(texts)
|
|
|
|
if batch_idx % log_interval == 0:
|
|
batch_str = f"{batch_idx}/{num_batches}"
|
|
|
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
|
return results
|
|
|
|
|
|
def save_results(
|
|
params: AttributeDict,
|
|
test_set_name: str,
|
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
|
):
|
|
test_set_wers = dict()
|
|
for key, results in results_dict.items():
|
|
recog_path = (
|
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
)
|
|
results = sorted(results)
|
|
store_transcripts(filename=recog_path, texts=results, char_level = True)
|
|
logging.info(f"The transcripts are stored in {recog_path}")
|
|
|
|
# The following prints out WERs, per-word error statistics and aligned
|
|
# ref/hyp pairs.
|
|
errs_filename = (
|
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
)
|
|
with open(errs_filename, "w") as f:
|
|
wer = write_error_stats(
|
|
f,
|
|
f"{test_set_name}-{key}",
|
|
results,
|
|
enable_log=True,
|
|
compute_CER=True,
|
|
)
|
|
test_set_wers[key] = wer
|
|
|
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
|
|
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
|
errs_info = (
|
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
)
|
|
with open(errs_info, "w") as f:
|
|
print("settings\tWER", file=f)
|
|
for key, val in test_set_wers:
|
|
print("{}\t{}".format(key, val), file=f)
|
|
|
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
|
note = "\tbest for {}".format(test_set_name)
|
|
for key, val in test_set_wers:
|
|
s += "{}\t{}{}\n".format(key, val, note)
|
|
note = ""
|
|
logging.info(s)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
AishellAsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
args.lang_dir = Path(args.lang_dir)
|
|
|
|
params = get_params()
|
|
# add decoding params
|
|
params.update(get_decoding_params())
|
|
params.update(vars(args))
|
|
|
|
assert params.decoding_method in (
|
|
"ctc-greedy-search",
|
|
"ctc-prefix-beam-search",
|
|
) # support ctc-greedy-search and ctc-prefix-beam-search
|
|
params.res_dir = params.exp_dir / params.decoding_method
|
|
|
|
if params.iter > 0:
|
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
|
else:
|
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
|
|
|
if params.causal:
|
|
assert (
|
|
"," not in params.chunk_size
|
|
), "chunk_size should be one value in decoding."
|
|
assert (
|
|
"," not in params.left_context_frames
|
|
), "left_context_frames should be one value in decoding."
|
|
params.suffix += f"-chunk-{params.chunk_size}"
|
|
params.suffix += f"-left-context-{params.left_context_frames}"
|
|
|
|
if "prefix-beam-search" in params.decoding_method:
|
|
params.suffix += f"_beam-{params.beam}"
|
|
params.suffix += f"-context-{params.context_size}"
|
|
|
|
if params.use_averaged_model:
|
|
params.suffix += "-use-averaged-model"
|
|
|
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
|
logging.info("Decoding started")
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
params.device = device
|
|
|
|
logging.info(f"Device: {device}")
|
|
|
|
lexicon = Lexicon(params.lang_dir)
|
|
|
|
params.blank_id = lexicon.token_table["<blk>"]
|
|
params.vocab_size = max(lexicon.tokens) + 1
|
|
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_model(params)
|
|
|
|
if not params.use_averaged_model:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
elif params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if i >= 1:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
else:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg + 1
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg + 1:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
filename_start = filenames[-1]
|
|
filename_end = filenames[0]
|
|
logging.info(
|
|
"Calculating the averaged model over iteration checkpoints"
|
|
f" from {filename_start} (excluded) to {filename_end}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
else:
|
|
assert params.avg > 0, params.avg
|
|
start = params.epoch - params.avg
|
|
assert start >= 1, start
|
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
logging.info(
|
|
f"Calculating the averaged model over epoch range from "
|
|
f"{start} (excluded) to {params.epoch}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
|
|
model.to(device)
|
|
model.eval()
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
# we need cut ids to display recognition results.
|
|
args.return_cuts = True
|
|
aishell = AishellAsrDataModule(args)
|
|
|
|
def remove_short_utt(c: Cut):
|
|
T = ((c.num_frames - 7) // 2 + 1) // 2
|
|
if T <= 0:
|
|
logging.warning(
|
|
f"Exclude cut with ID {c.id} from decoding, num_frames : {c.num_frames}."
|
|
)
|
|
return T > 0
|
|
|
|
dev_cuts = aishell.valid_cuts()
|
|
dev_cuts = dev_cuts.filter(remove_short_utt)
|
|
dev_dl = aishell.valid_dataloaders(dev_cuts)
|
|
|
|
test_cuts = aishell.test_cuts()
|
|
test_cuts = test_cuts.filter(remove_short_utt)
|
|
test_dl = aishell.test_dataloaders(test_cuts)
|
|
|
|
test_sets = ["dev", "test"]
|
|
test_dls = [dev_dl, test_dl]
|
|
|
|
for test_set, test_dl in zip(test_sets, test_dls):
|
|
results_dict = decode_dataset(
|
|
dl=test_dl,
|
|
params=params,
|
|
model=model,
|
|
lexicon=lexicon,
|
|
)
|
|
|
|
save_results(
|
|
params=params,
|
|
test_set_name=test_set,
|
|
results_dict=results_dict,
|
|
)
|
|
|
|
logging.info("Done!")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|