mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
1601 lines
63 KiB
Python
1601 lines
63 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import math
|
|
import warnings
|
|
from typing import List, Optional, Tuple
|
|
|
|
import torch
|
|
from encoder_interface import EncoderInterface
|
|
from scaling import (
|
|
ActivationBalancer,
|
|
BasicNorm,
|
|
DoubleSwish,
|
|
ScaledConv1d,
|
|
ScaledConv2d,
|
|
ScaledLinear,
|
|
)
|
|
from torch import Tensor, nn
|
|
|
|
from icefall.utils import is_jit_tracing, make_pad_mask, subsequent_chunk_mask
|
|
|
|
|
|
class Conformer(EncoderInterface):
|
|
"""
|
|
Args:
|
|
num_features (int): Number of input features
|
|
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
|
d_model (int): attention dimension, also the output dimension
|
|
nhead (int): number of head
|
|
dim_feedforward (int): feedforward dimention
|
|
num_encoder_layers (int): number of encoder layers
|
|
dropout (float): dropout rate
|
|
layer_dropout (float): layer-dropout rate.
|
|
cnn_module_kernel (int): Kernel size of convolution module
|
|
vgg_frontend (bool): whether to use vgg frontend.
|
|
dynamic_chunk_training (bool): whether to use dynamic chunk training, if
|
|
you want to train a streaming model, this is expected to be True.
|
|
When setting True, it will use a masking strategy to make the attention
|
|
see only limited left and right context.
|
|
short_chunk_threshold (float): a threshold to determinize the chunk size
|
|
to be used in masking training, if the randomly generated chunk size
|
|
is greater than ``max_len * short_chunk_threshold`` (max_len is the
|
|
max sequence length of current batch) then it will use
|
|
full context in training (i.e. with chunk size equals to max_len).
|
|
This will be used only when dynamic_chunk_training is True.
|
|
short_chunk_size (int): see docs above, if the randomly generated chunk
|
|
size equals to or less than ``max_len * short_chunk_threshold``, the
|
|
chunk size will be sampled uniformly from 1 to short_chunk_size.
|
|
This also will be used only when dynamic_chunk_training is True.
|
|
num_left_chunks (int): the left context (in chunks) attention can see, the
|
|
chunk size is decided by short_chunk_threshold and short_chunk_size.
|
|
A minus value means seeing full left context.
|
|
This also will be used only when dynamic_chunk_training is True.
|
|
causal (bool): Whether to use causal convolution in conformer encoder
|
|
layer. This MUST be True when using dynamic_chunk_training.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_features: int,
|
|
subsampling_factor: int = 4,
|
|
d_model: int = 256,
|
|
nhead: int = 4,
|
|
dim_feedforward: int = 2048,
|
|
num_encoder_layers: int = 12,
|
|
dropout: float = 0.1,
|
|
layer_dropout: float = 0.075,
|
|
cnn_module_kernel: int = 31,
|
|
dynamic_chunk_training: bool = False,
|
|
short_chunk_threshold: float = 0.75,
|
|
short_chunk_size: int = 25,
|
|
num_left_chunks: int = -1,
|
|
causal: bool = False,
|
|
) -> None:
|
|
super(Conformer, self).__init__()
|
|
|
|
self.num_features = num_features
|
|
self.subsampling_factor = subsampling_factor
|
|
if subsampling_factor != 4:
|
|
raise NotImplementedError("Support only 'subsampling_factor=4'.")
|
|
|
|
# self.encoder_embed converts the input of shape (N, T, num_features)
|
|
# to the shape (N, T//subsampling_factor, d_model).
|
|
# That is, it does two things simultaneously:
|
|
# (1) subsampling: T -> T//subsampling_factor
|
|
# (2) embedding: num_features -> d_model
|
|
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
|
|
|
|
self.encoder_layers = num_encoder_layers
|
|
self.d_model = d_model
|
|
self.cnn_module_kernel = cnn_module_kernel
|
|
self.causal = causal
|
|
self.dynamic_chunk_training = dynamic_chunk_training
|
|
self.short_chunk_threshold = short_chunk_threshold
|
|
self.short_chunk_size = short_chunk_size
|
|
self.num_left_chunks = num_left_chunks
|
|
|
|
self.encoder_pos = RelPositionalEncoding(d_model, dropout)
|
|
|
|
encoder_layer = ConformerEncoderLayer(
|
|
d_model,
|
|
nhead,
|
|
dim_feedforward,
|
|
dropout,
|
|
layer_dropout,
|
|
cnn_module_kernel,
|
|
causal,
|
|
)
|
|
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
|
self._init_state: List[torch.Tensor] = [torch.empty(0)]
|
|
|
|
def forward(
|
|
self, x: torch.Tensor, x_lens: torch.Tensor, warmup: float = 1.0
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Args:
|
|
x:
|
|
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
|
|
x_lens:
|
|
A tensor of shape (batch_size,) containing the number of frames in
|
|
`x` before padding.
|
|
warmup:
|
|
A floating point value that gradually increases from 0 throughout
|
|
training; when it is >= 1.0 we are "fully warmed up". It is used
|
|
to turn modules on sequentially.
|
|
Returns:
|
|
Return a tuple containing 2 tensors:
|
|
- embeddings: its shape is (batch_size, output_seq_len, d_model)
|
|
- lengths, a tensor of shape (batch_size,) containing the number
|
|
of frames in `embeddings` before padding.
|
|
"""
|
|
x = self.encoder_embed(x)
|
|
x, pos_emb = self.encoder_pos(x)
|
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
|
|
|
# Caution: We assume the subsampling factor is 4!
|
|
|
|
# lengths = ((x_lens - 1) // 2 - 1) // 2 # issue an warning
|
|
#
|
|
# Note: rounding_mode in torch.div() is available only in torch >= 1.8.0
|
|
lengths = (((x_lens - 1) >> 1) - 1) >> 1
|
|
|
|
if not is_jit_tracing():
|
|
assert x.size(0) == lengths.max().item()
|
|
|
|
src_key_padding_mask = make_pad_mask(lengths)
|
|
|
|
if self.dynamic_chunk_training:
|
|
assert (
|
|
self.causal
|
|
), "Causal convolution is required for streaming conformer."
|
|
max_len = x.size(0)
|
|
chunk_size = torch.randint(1, max_len, (1,)).item()
|
|
if chunk_size > (max_len * self.short_chunk_threshold):
|
|
chunk_size = max_len
|
|
else:
|
|
chunk_size = chunk_size % self.short_chunk_size + 1
|
|
|
|
mask = ~subsequent_chunk_mask(
|
|
size=x.size(0),
|
|
chunk_size=chunk_size,
|
|
num_left_chunks=self.num_left_chunks,
|
|
device=x.device,
|
|
)
|
|
x = self.encoder(
|
|
x,
|
|
pos_emb,
|
|
mask=mask,
|
|
src_key_padding_mask=src_key_padding_mask,
|
|
warmup=warmup,
|
|
) # (T, N, C)
|
|
else:
|
|
x = self.encoder(
|
|
x,
|
|
pos_emb,
|
|
mask=None,
|
|
src_key_padding_mask=src_key_padding_mask,
|
|
warmup=warmup,
|
|
) # (T, N, C)
|
|
|
|
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
|
return x, lengths
|
|
|
|
@torch.jit.export
|
|
def get_init_state(
|
|
self, left_context: int, device: torch.device
|
|
) -> List[torch.Tensor]:
|
|
"""Return the initial cache state of the model.
|
|
|
|
Args:
|
|
left_context: The left context size (in frames after subsampling).
|
|
|
|
Returns:
|
|
Return the initial state of the model, it is a list containing two
|
|
tensors, the first one is the cache for attentions which has a shape
|
|
of (num_encoder_layers, left_context, encoder_dim), the second one
|
|
is the cache of conv_modules which has a shape of
|
|
(num_encoder_layers, cnn_module_kernel - 1, encoder_dim).
|
|
|
|
NOTE: the returned tensors are on the given device.
|
|
"""
|
|
if len(self._init_state) == 2 and self._init_state[0].size(1) == left_context:
|
|
# Note: It is OK to share the init state as it is
|
|
# not going to be modified by the model
|
|
return self._init_state
|
|
|
|
init_states: List[torch.Tensor] = [
|
|
torch.zeros(
|
|
(
|
|
self.encoder_layers,
|
|
left_context,
|
|
self.d_model,
|
|
),
|
|
device=device,
|
|
),
|
|
torch.zeros(
|
|
(
|
|
self.encoder_layers,
|
|
self.cnn_module_kernel - 1,
|
|
self.d_model,
|
|
),
|
|
device=device,
|
|
),
|
|
]
|
|
|
|
self._init_state = init_states
|
|
|
|
return init_states
|
|
|
|
@torch.jit.export
|
|
def streaming_forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_lens: torch.Tensor,
|
|
states: Optional[List[Tensor]] = None,
|
|
processed_lens: Optional[Tensor] = None,
|
|
left_context: int = 64,
|
|
right_context: int = 4,
|
|
chunk_size: int = 16,
|
|
simulate_streaming: bool = False,
|
|
warmup: float = 1.0,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]]:
|
|
"""
|
|
Args:
|
|
x:
|
|
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
|
|
x_lens:
|
|
A tensor of shape (batch_size,) containing the number of frames in
|
|
`x` before padding.
|
|
states:
|
|
The decode states for previous frames which contains the cached data.
|
|
It has two elements, the first element is the attn_cache which has
|
|
a shape of (encoder_layers, left_context, batch, attention_dim),
|
|
the second element is the conv_cache which has a shape of
|
|
(encoder_layers, cnn_module_kernel-1, batch, conv_dim).
|
|
Note: states will be modified in this function.
|
|
processed_lens:
|
|
How many frames (after subsampling) have been processed for each sequence.
|
|
left_context:
|
|
How many previous frames the attention can see in current chunk.
|
|
Note: It's not that each individual frame has `left_context` frames
|
|
of left context, some have more.
|
|
right_context:
|
|
How many future frames the attention can see in current chunk.
|
|
Note: It's not that each individual frame has `right_context` frames
|
|
of right context, some have more.
|
|
chunk_size:
|
|
The chunk size for decoding, this will be used to simulate streaming
|
|
decoding using masking.
|
|
simulate_streaming:
|
|
If setting True, it will use a masking strategy to simulate streaming
|
|
fashion (i.e. every chunk data only see limited left context and
|
|
right context). The whole sequence is supposed to be send at a time
|
|
When using simulate_streaming.
|
|
warmup:
|
|
A floating point value that gradually increases from 0 throughout
|
|
training; when it is >= 1.0 we are "fully warmed up". It is used
|
|
to turn modules on sequentially.
|
|
Returns:
|
|
Return a tuple containing 2 tensors:
|
|
- logits, its shape is (batch_size, output_seq_len, output_dim)
|
|
- logit_lens, a tensor of shape (batch_size,) containing the number
|
|
of frames in `logits` before padding.
|
|
- decode_states, the updated states including the information
|
|
of current chunk.
|
|
"""
|
|
|
|
# x: [N, T, C]
|
|
# Caution: We assume the subsampling factor is 4!
|
|
|
|
# lengths = ((x_lens - 1) // 2 - 1) // 2 # issue an warning
|
|
#
|
|
# Note: rounding_mode in torch.div() is available only in torch >= 1.8.0
|
|
lengths = (((x_lens - 1) >> 1) - 1) >> 1
|
|
|
|
if not simulate_streaming:
|
|
assert states is not None
|
|
assert processed_lens is not None
|
|
assert (
|
|
len(states) == 2
|
|
and states[0].shape
|
|
== (self.encoder_layers, left_context, x.size(0), self.d_model)
|
|
and states[1].shape
|
|
== (
|
|
self.encoder_layers,
|
|
self.cnn_module_kernel - 1,
|
|
x.size(0),
|
|
self.d_model,
|
|
)
|
|
), f"""The length of states MUST be equal to 2, and the shape of
|
|
first element should be {(self.encoder_layers, left_context, x.size(0), self.d_model)},
|
|
given {states[0].shape}. the shape of second element should be
|
|
{(self.encoder_layers, self.cnn_module_kernel - 1, x.size(0), self.d_model)},
|
|
given {states[1].shape}."""
|
|
|
|
lengths -= 2 # we will cut off 1 frame on each side of encoder_embed output
|
|
|
|
src_key_padding_mask = make_pad_mask(lengths)
|
|
|
|
processed_mask = torch.arange(left_context, device=x.device).expand(
|
|
x.size(0), left_context
|
|
)
|
|
processed_lens = processed_lens.view(x.size(0), 1)
|
|
processed_mask = (processed_lens <= processed_mask).flip(1)
|
|
|
|
src_key_padding_mask = torch.cat(
|
|
[processed_mask, src_key_padding_mask], dim=1
|
|
)
|
|
|
|
embed = self.encoder_embed(x)
|
|
|
|
# cut off 1 frame on each size of embed as they see the padding
|
|
# value which causes a training and decoding mismatch.
|
|
embed = embed[:, 1:-1, :]
|
|
|
|
embed, pos_enc = self.encoder_pos(embed, left_context)
|
|
embed = embed.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
|
|
|
|
x, states = self.encoder.chunk_forward(
|
|
embed,
|
|
pos_enc,
|
|
src_key_padding_mask=src_key_padding_mask,
|
|
warmup=warmup,
|
|
states=states,
|
|
left_context=left_context,
|
|
right_context=right_context,
|
|
) # (T, B, F)
|
|
if right_context > 0:
|
|
x = x[0:-right_context, ...]
|
|
lengths -= right_context
|
|
else:
|
|
assert states is None
|
|
states = [] # just to make torch.script.jit happy
|
|
# this branch simulates streaming decoding using mask as we are
|
|
# using in training time.
|
|
src_key_padding_mask = make_pad_mask(lengths)
|
|
x = self.encoder_embed(x)
|
|
x, pos_emb = self.encoder_pos(x)
|
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
|
|
|
assert x.size(0) == lengths.max().item()
|
|
|
|
if chunk_size < 0:
|
|
# use full attention
|
|
chunk_size = x.size(0)
|
|
left_context = -1
|
|
|
|
num_left_chunks = -1
|
|
if left_context >= 0:
|
|
assert left_context % chunk_size == 0
|
|
num_left_chunks = left_context // chunk_size
|
|
|
|
mask = ~subsequent_chunk_mask(
|
|
size=x.size(0),
|
|
chunk_size=chunk_size,
|
|
num_left_chunks=num_left_chunks,
|
|
device=x.device,
|
|
)
|
|
x = self.encoder(
|
|
x,
|
|
pos_emb,
|
|
mask=mask,
|
|
src_key_padding_mask=src_key_padding_mask,
|
|
warmup=warmup,
|
|
) # (T, N, C)
|
|
|
|
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
|
|
|
return x, lengths, states
|
|
|
|
|
|
class ConformerEncoderLayer(nn.Module):
|
|
"""
|
|
ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks.
|
|
See: "Conformer: Convolution-augmented Transformer for Speech Recognition"
|
|
|
|
Args:
|
|
d_model: the number of expected features in the input (required).
|
|
nhead: the number of heads in the multiheadattention models (required).
|
|
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
|
dropout: the dropout value (default=0.1).
|
|
cnn_module_kernel (int): Kernel size of convolution module.
|
|
causal (bool): Whether to use causal convolution in conformer encoder
|
|
layer. This MUST be True when using dynamic_chunk_training and streaming decoding.
|
|
|
|
Examples::
|
|
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
|
>>> src = torch.rand(10, 32, 512)
|
|
>>> pos_emb = torch.rand(32, 19, 512)
|
|
>>> out = encoder_layer(src, pos_emb)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
d_model: int,
|
|
nhead: int,
|
|
dim_feedforward: int = 2048,
|
|
dropout: float = 0.1,
|
|
layer_dropout: float = 0.075,
|
|
cnn_module_kernel: int = 31,
|
|
causal: bool = False,
|
|
) -> None:
|
|
super(ConformerEncoderLayer, self).__init__()
|
|
|
|
self.layer_dropout = layer_dropout
|
|
|
|
self.d_model = d_model
|
|
|
|
self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0)
|
|
|
|
self.feed_forward = nn.Sequential(
|
|
ScaledLinear(d_model, dim_feedforward),
|
|
ActivationBalancer(channel_dim=-1),
|
|
DoubleSwish(),
|
|
nn.Dropout(dropout),
|
|
ScaledLinear(dim_feedforward, d_model, initial_scale=0.25),
|
|
)
|
|
|
|
self.feed_forward_macaron = nn.Sequential(
|
|
ScaledLinear(d_model, dim_feedforward),
|
|
ActivationBalancer(channel_dim=-1),
|
|
DoubleSwish(),
|
|
nn.Dropout(dropout),
|
|
ScaledLinear(dim_feedforward, d_model, initial_scale=0.25),
|
|
)
|
|
|
|
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel, causal=causal)
|
|
|
|
self.norm_final = BasicNorm(d_model)
|
|
|
|
# try to ensure the output is close to zero-mean (or at least, zero-median).
|
|
self.balancer = ActivationBalancer(
|
|
channel_dim=-1, min_positive=0.45, max_positive=0.55, max_abs=6.0
|
|
)
|
|
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
def forward(
|
|
self,
|
|
src: Tensor,
|
|
pos_emb: Tensor,
|
|
src_key_padding_mask: Optional[Tensor] = None,
|
|
src_mask: Optional[Tensor] = None,
|
|
warmup: float = 1.0,
|
|
) -> Tensor:
|
|
"""
|
|
Pass the input through the encoder layer.
|
|
|
|
Args:
|
|
src: the sequence to the encoder layer (required).
|
|
pos_emb: Positional embedding tensor (required).
|
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
|
src_mask: the mask for the src sequence (optional).
|
|
warmup: controls selective bypass of of layers; if < 1.0, we will
|
|
bypass layers more frequently.
|
|
Shape:
|
|
src: (S, N, E).
|
|
pos_emb: (N, 2*S-1, E)
|
|
src_mask: (S, S).
|
|
src_key_padding_mask: (N, S).
|
|
S is the source sequence length, N is the batch size, E is the feature number
|
|
"""
|
|
src_orig = src
|
|
|
|
warmup_scale = min(0.1 + warmup, 1.0)
|
|
# alpha = 1.0 means fully use this encoder layer, 0.0 would mean
|
|
# completely bypass it.
|
|
if self.training:
|
|
alpha = (
|
|
warmup_scale
|
|
if torch.rand(()).item() <= (1.0 - self.layer_dropout)
|
|
else 0.1
|
|
)
|
|
else:
|
|
alpha = 1.0
|
|
|
|
# macaron style feed forward module
|
|
src = src + self.dropout(self.feed_forward_macaron(src))
|
|
|
|
# multi-headed self-attention module
|
|
src_att = self.self_attn(
|
|
src,
|
|
src,
|
|
src,
|
|
pos_emb=pos_emb,
|
|
attn_mask=src_mask,
|
|
key_padding_mask=src_key_padding_mask,
|
|
)[0]
|
|
|
|
src = src + self.dropout(src_att)
|
|
|
|
# convolution module
|
|
conv, _ = self.conv_module(src, src_key_padding_mask=src_key_padding_mask)
|
|
src = src + self.dropout(conv)
|
|
|
|
# feed forward module
|
|
src = src + self.dropout(self.feed_forward(src))
|
|
|
|
src = self.norm_final(self.balancer(src))
|
|
|
|
if alpha != 1.0:
|
|
src = alpha * src + (1 - alpha) * src_orig
|
|
|
|
return src
|
|
|
|
@torch.jit.export
|
|
def chunk_forward(
|
|
self,
|
|
src: Tensor,
|
|
pos_emb: Tensor,
|
|
states: List[Tensor],
|
|
src_mask: Optional[Tensor] = None,
|
|
src_key_padding_mask: Optional[Tensor] = None,
|
|
warmup: float = 1.0,
|
|
left_context: int = 0,
|
|
right_context: int = 0,
|
|
) -> Tuple[Tensor, List[Tensor]]:
|
|
"""
|
|
Pass the input through the encoder layer.
|
|
|
|
Args:
|
|
src: the sequence to the encoder layer (required).
|
|
pos_emb: Positional embedding tensor (required).
|
|
states:
|
|
The decode states for previous frames which contains the cached data.
|
|
It has two elements, the first element is the attn_cache which has
|
|
a shape of (left_context, batch, attention_dim),
|
|
the second element is the conv_cache which has a shape of
|
|
(cnn_module_kernel-1, batch, conv_dim).
|
|
Note: states will be modified in this function.
|
|
src_mask: the mask for the src sequence (optional).
|
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
|
warmup: controls selective bypass of of layers; if < 1.0, we will
|
|
bypass layers more frequently.
|
|
left_context:
|
|
How many previous frames the attention can see in current chunk.
|
|
Note: It's not that each individual frame has `left_context` frames
|
|
of left context, some have more.
|
|
right_context:
|
|
How many future frames the attention can see in current chunk.
|
|
Note: It's not that each individual frame has `right_context` frames
|
|
of right context, some have more.
|
|
|
|
Shape:
|
|
src: (S, N, E).
|
|
pos_emb: (N, 2*(S+left_context)-1, E).
|
|
src_mask: (S, S).
|
|
src_key_padding_mask: (N, S).
|
|
S is the source sequence length, N is the batch size, E is the feature number
|
|
"""
|
|
|
|
assert not self.training
|
|
assert len(states) == 2
|
|
assert states[0].shape == (left_context, src.size(1), src.size(2))
|
|
|
|
# macaron style feed forward module
|
|
src = src + self.dropout(self.feed_forward_macaron(src))
|
|
|
|
# We put the attention cache this level (i.e. before linear transformation)
|
|
# to save memory consumption, when decoding in streaming fashion, the
|
|
# batch size would be thousands (for 32GB machine), if we cache key & val
|
|
# separately, it needs extra several GB memory.
|
|
# TODO(WeiKang): Move cache to self_attn level (i.e. cache key & val
|
|
# separately) if needed.
|
|
key = torch.cat([states[0], src], dim=0)
|
|
val = key
|
|
if right_context > 0:
|
|
states[0] = key[
|
|
-(left_context + right_context) : -right_context, ... # noqa
|
|
]
|
|
else:
|
|
states[0] = key[-left_context:, ...]
|
|
|
|
# multi-headed self-attention module
|
|
src_att = self.self_attn(
|
|
src,
|
|
key,
|
|
val,
|
|
pos_emb=pos_emb,
|
|
attn_mask=src_mask,
|
|
key_padding_mask=src_key_padding_mask,
|
|
left_context=left_context,
|
|
)[0]
|
|
|
|
src = src + self.dropout(src_att)
|
|
|
|
# convolution module
|
|
conv, conv_cache = self.conv_module(src, states[1], right_context)
|
|
states[1] = conv_cache
|
|
|
|
src = src + self.dropout(conv)
|
|
|
|
# feed forward module
|
|
src = src + self.dropout(self.feed_forward(src))
|
|
|
|
src = self.norm_final(self.balancer(src))
|
|
|
|
return src, states
|
|
|
|
|
|
class ConformerEncoder(nn.Module):
|
|
r"""ConformerEncoder is a stack of N encoder layers
|
|
|
|
Args:
|
|
encoder_layer: an instance of the ConformerEncoderLayer() class (required).
|
|
num_layers: the number of sub-encoder-layers in the encoder (required).
|
|
|
|
Examples::
|
|
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
|
>>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6)
|
|
>>> src = torch.rand(10, 32, 512)
|
|
>>> pos_emb = torch.rand(32, 19, 512)
|
|
>>> out = conformer_encoder(src, pos_emb)
|
|
"""
|
|
|
|
def __init__(self, encoder_layer: nn.Module, num_layers: int) -> None:
|
|
super().__init__()
|
|
self.layers = nn.ModuleList(
|
|
[copy.deepcopy(encoder_layer) for i in range(num_layers)]
|
|
)
|
|
self.num_layers = num_layers
|
|
|
|
def forward(
|
|
self,
|
|
src: Tensor,
|
|
pos_emb: Tensor,
|
|
src_key_padding_mask: Optional[Tensor] = None,
|
|
mask: Optional[Tensor] = None,
|
|
warmup: float = 1.0,
|
|
) -> Tensor:
|
|
r"""Pass the input through the encoder layers in turn.
|
|
|
|
Args:
|
|
src: the sequence to the encoder (required).
|
|
pos_emb: Positional embedding tensor (required).
|
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
|
mask: the mask for the src sequence (optional).
|
|
warmup: controls selective bypass of of layers; if < 1.0, we will
|
|
bypass layers more frequently.
|
|
|
|
Shape:
|
|
src: (S, N, E).
|
|
pos_emb: (N, 2*S-1, E)
|
|
mask: (S, S).
|
|
src_key_padding_mask: (N, S).
|
|
S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
|
|
|
|
"""
|
|
output = src
|
|
|
|
for layer_index, mod in enumerate(self.layers):
|
|
output = mod(
|
|
output,
|
|
pos_emb,
|
|
src_mask=mask,
|
|
src_key_padding_mask=src_key_padding_mask,
|
|
warmup=warmup,
|
|
)
|
|
|
|
return output
|
|
|
|
@torch.jit.export
|
|
def chunk_forward(
|
|
self,
|
|
src: Tensor,
|
|
pos_emb: Tensor,
|
|
states: List[Tensor],
|
|
mask: Optional[Tensor] = None,
|
|
src_key_padding_mask: Optional[Tensor] = None,
|
|
warmup: float = 1.0,
|
|
left_context: int = 0,
|
|
right_context: int = 0,
|
|
) -> Tuple[Tensor, List[Tensor]]:
|
|
r"""Pass the input through the encoder layers in turn.
|
|
|
|
Args:
|
|
src: the sequence to the encoder (required).
|
|
pos_emb: Positional embedding tensor (required).
|
|
states:
|
|
The decode states for previous frames which contains the cached data.
|
|
It has two elements, the first element is the attn_cache which has
|
|
a shape of (encoder_layers, left_context, batch, attention_dim),
|
|
the second element is the conv_cache which has a shape of
|
|
(encoder_layers, cnn_module_kernel-1, batch, conv_dim).
|
|
Note: states will be modified in this function.
|
|
mask: the mask for the src sequence (optional).
|
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
|
warmup: controls selective bypass of of layers; if < 1.0, we will
|
|
bypass layers more frequently.
|
|
left_context:
|
|
How many previous frames the attention can see in current chunk.
|
|
Note: It's not that each individual frame has `left_context` frames
|
|
of left context, some have more.
|
|
right_context:
|
|
How many future frames the attention can see in current chunk.
|
|
Note: It's not that each individual frame has `right_context` frames
|
|
of right context, some have more.
|
|
Shape:
|
|
src: (S, N, E).
|
|
pos_emb: (N, 2*(S+left_context)-1, E).
|
|
mask: (S, S).
|
|
src_key_padding_mask: (N, S).
|
|
S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
|
|
|
|
"""
|
|
assert not self.training
|
|
assert len(states) == 2
|
|
assert states[0].shape == (
|
|
self.num_layers,
|
|
left_context,
|
|
src.size(1),
|
|
src.size(2),
|
|
)
|
|
assert states[1].size(0) == self.num_layers
|
|
|
|
output = src
|
|
|
|
for layer_index, mod in enumerate(self.layers):
|
|
cache = [states[0][layer_index], states[1][layer_index]]
|
|
output, cache = mod.chunk_forward(
|
|
output,
|
|
pos_emb,
|
|
states=cache,
|
|
src_mask=mask,
|
|
src_key_padding_mask=src_key_padding_mask,
|
|
warmup=warmup,
|
|
left_context=left_context,
|
|
right_context=right_context,
|
|
)
|
|
states[0][layer_index] = cache[0]
|
|
states[1][layer_index] = cache[1]
|
|
|
|
return output, states
|
|
|
|
|
|
class RelPositionalEncoding(torch.nn.Module):
|
|
"""Relative positional encoding module.
|
|
|
|
See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
|
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
|
|
|
|
Args:
|
|
d_model: Embedding dimension.
|
|
dropout_rate: Dropout rate.
|
|
max_len: Maximum input length.
|
|
|
|
"""
|
|
|
|
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None:
|
|
"""Construct an PositionalEncoding object."""
|
|
super(RelPositionalEncoding, self).__init__()
|
|
if is_jit_tracing():
|
|
# 10k frames correspond to ~100k ms, e.g., 100 seconds, i.e.,
|
|
# It assumes that the maximum input won't have more than
|
|
# 10k frames.
|
|
#
|
|
# TODO(fangjun): Use torch.jit.script() for this module
|
|
max_len = 10000
|
|
|
|
self.d_model = d_model
|
|
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
|
self.pe = None
|
|
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
|
|
|
def extend_pe(self, x: Tensor, left_context: int = 0) -> None:
|
|
"""Reset the positional encodings."""
|
|
x_size_1 = x.size(1) + left_context
|
|
if self.pe is not None:
|
|
# self.pe contains both positive and negative parts
|
|
# the length of self.pe is 2 * input_len - 1
|
|
if self.pe.size(1) >= x_size_1 * 2 - 1:
|
|
# Note: TorchScript doesn't implement operator== for torch.Device
|
|
if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device):
|
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
|
return
|
|
# Suppose `i` means to the position of query vector and `j` means the
|
|
# position of key vector. We use position relative positions when keys
|
|
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
|
pe_positive = torch.zeros(x_size_1, self.d_model)
|
|
pe_negative = torch.zeros(x_size_1, self.d_model)
|
|
position = torch.arange(0, x_size_1, dtype=torch.float32).unsqueeze(1)
|
|
div_term = torch.exp(
|
|
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
|
* -(math.log(10000.0) / self.d_model)
|
|
)
|
|
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
|
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
|
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
|
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
|
|
|
# Reserve the order of positive indices and concat both positive and
|
|
# negative indices. This is used to support the shifting trick
|
|
# as in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
|
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
|
pe_negative = pe_negative[1:].unsqueeze(0)
|
|
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
|
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
left_context: int = 0,
|
|
) -> Tuple[Tensor, Tensor]:
|
|
"""Add positional encoding.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor (batch, time, `*`).
|
|
left_context (int): left context (in frames) used during streaming decoding.
|
|
this is used only in real streaming decoding, in other circumstances,
|
|
it MUST be 0.
|
|
|
|
Returns:
|
|
torch.Tensor: Encoded tensor (batch, time, `*`).
|
|
torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
|
|
|
|
"""
|
|
if isinstance(left_context, torch.Tensor):
|
|
left_context = left_context.item()
|
|
self.extend_pe(x, left_context)
|
|
x_size_1 = x.size(1) + left_context
|
|
pos_emb = self.pe[
|
|
:,
|
|
self.pe.size(1) // 2
|
|
- x_size_1
|
|
+ 1 : self.pe.size(1) // 2 # noqa E203
|
|
+ x.size(1),
|
|
]
|
|
return self.dropout(x), self.dropout(pos_emb)
|
|
|
|
|
|
class RelPositionMultiheadAttention(nn.Module):
|
|
r"""Multi-Head Attention layer with relative position encoding
|
|
|
|
See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
|
|
|
Args:
|
|
embed_dim: total dimension of the model.
|
|
num_heads: parallel attention heads.
|
|
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
|
|
|
Examples::
|
|
|
|
>>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
|
|
>>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
num_heads: int,
|
|
dropout: float = 0.0,
|
|
) -> None:
|
|
super(RelPositionMultiheadAttention, self).__init__()
|
|
self.embed_dim = embed_dim
|
|
self.num_heads = num_heads
|
|
self.dropout = dropout
|
|
self.head_dim = embed_dim // num_heads
|
|
assert (
|
|
self.head_dim * num_heads == self.embed_dim
|
|
), "embed_dim must be divisible by num_heads"
|
|
|
|
self.in_proj = ScaledLinear(embed_dim, 3 * embed_dim, bias=True)
|
|
self.out_proj = ScaledLinear(
|
|
embed_dim, embed_dim, bias=True, initial_scale=0.25
|
|
)
|
|
|
|
# linear transformation for positional encoding.
|
|
self.linear_pos = ScaledLinear(embed_dim, embed_dim, bias=False)
|
|
# these two learnable bias are used in matrix c and matrix d
|
|
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
|
self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
|
self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
|
self.pos_bias_u_scale = nn.Parameter(torch.zeros(()).detach())
|
|
self.pos_bias_v_scale = nn.Parameter(torch.zeros(()).detach())
|
|
self._reset_parameters()
|
|
|
|
def _pos_bias_u(self):
|
|
return self.pos_bias_u * self.pos_bias_u_scale.exp()
|
|
|
|
def _pos_bias_v(self):
|
|
return self.pos_bias_v * self.pos_bias_v_scale.exp()
|
|
|
|
def _reset_parameters(self) -> None:
|
|
nn.init.normal_(self.pos_bias_u, std=0.01)
|
|
nn.init.normal_(self.pos_bias_v, std=0.01)
|
|
|
|
def forward(
|
|
self,
|
|
query: Tensor,
|
|
key: Tensor,
|
|
value: Tensor,
|
|
pos_emb: Tensor,
|
|
key_padding_mask: Optional[Tensor] = None,
|
|
need_weights: bool = False,
|
|
attn_mask: Optional[Tensor] = None,
|
|
left_context: int = 0,
|
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
|
r"""
|
|
Args:
|
|
query, key, value: map a query and a set of key-value pairs to an output.
|
|
pos_emb: Positional embedding tensor
|
|
key_padding_mask: if provided, specified padding elements in the key will
|
|
be ignored by the attention. When given a binary mask and a value is True,
|
|
the corresponding value on the attention layer will be ignored. When given
|
|
a byte mask and a value is non-zero, the corresponding value on the attention
|
|
layer will be ignored
|
|
need_weights: output attn_output_weights.
|
|
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
|
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
|
left_context (int): left context (in frames) used during streaming decoding.
|
|
this is used only in real streaming decoding, in other circumstances,
|
|
it MUST be 0.
|
|
|
|
Shape:
|
|
- Inputs:
|
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
|
the embedding dimension.
|
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
|
the embedding dimension.
|
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
|
the embedding dimension.
|
|
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
|
|
the embedding dimension.
|
|
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
|
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
|
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
|
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
|
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
|
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
|
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
|
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
|
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
|
is provided, it will be added to the attention weight.
|
|
|
|
- Outputs:
|
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
|
E is the embedding dimension.
|
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
|
L is the target sequence length, S is the source sequence length.
|
|
"""
|
|
return self.multi_head_attention_forward(
|
|
query,
|
|
key,
|
|
value,
|
|
pos_emb,
|
|
self.embed_dim,
|
|
self.num_heads,
|
|
self.in_proj.get_weight(),
|
|
self.in_proj.get_bias(),
|
|
self.dropout,
|
|
self.out_proj.get_weight(),
|
|
self.out_proj.get_bias(),
|
|
training=self.training,
|
|
key_padding_mask=key_padding_mask,
|
|
need_weights=need_weights,
|
|
attn_mask=attn_mask,
|
|
left_context=left_context,
|
|
)
|
|
|
|
def rel_shift(self, x: Tensor, left_context: int = 0) -> Tensor:
|
|
"""Compute relative positional encoding.
|
|
|
|
Args:
|
|
x: Input tensor (batch, head, time1, 2*time1-1+left_context).
|
|
time1 means the length of query vector.
|
|
left_context (int): left context (in frames) used during streaming decoding.
|
|
this is used only in real streaming decoding, in other circumstances,
|
|
it MUST be 0.
|
|
|
|
Returns:
|
|
Tensor: tensor of shape (batch, head, time1, time2)
|
|
(note: time2 has the same value as time1, but it is for
|
|
the key, while time1 is for the query).
|
|
"""
|
|
(batch_size, num_heads, time1, n) = x.shape
|
|
|
|
time2 = time1 + left_context
|
|
if not is_jit_tracing():
|
|
assert (
|
|
n == left_context + 2 * time1 - 1
|
|
), f"{n} == {left_context} + 2 * {time1} - 1"
|
|
|
|
if is_jit_tracing():
|
|
rows = torch.arange(start=time1 - 1, end=-1, step=-1)
|
|
cols = torch.arange(time2)
|
|
rows = rows.repeat(batch_size * num_heads).unsqueeze(-1)
|
|
indexes = rows + cols
|
|
|
|
x = x.reshape(-1, n)
|
|
x = torch.gather(x, dim=1, index=indexes)
|
|
x = x.reshape(batch_size, num_heads, time1, time2)
|
|
return x
|
|
else:
|
|
# Note: TorchScript requires explicit arg for stride()
|
|
batch_stride = x.stride(0)
|
|
head_stride = x.stride(1)
|
|
time1_stride = x.stride(2)
|
|
n_stride = x.stride(3)
|
|
return x.as_strided(
|
|
(batch_size, num_heads, time1, time2),
|
|
(batch_stride, head_stride, time1_stride - n_stride, n_stride),
|
|
storage_offset=n_stride * (time1 - 1),
|
|
)
|
|
|
|
def multi_head_attention_forward(
|
|
self,
|
|
query: Tensor,
|
|
key: Tensor,
|
|
value: Tensor,
|
|
pos_emb: Tensor,
|
|
embed_dim_to_check: int,
|
|
num_heads: int,
|
|
in_proj_weight: Tensor,
|
|
in_proj_bias: Tensor,
|
|
dropout_p: float,
|
|
out_proj_weight: Tensor,
|
|
out_proj_bias: Tensor,
|
|
training: bool = True,
|
|
key_padding_mask: Optional[Tensor] = None,
|
|
need_weights: bool = False,
|
|
attn_mask: Optional[Tensor] = None,
|
|
left_context: int = 0,
|
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
|
r"""
|
|
Args:
|
|
query, key, value: map a query and a set of key-value pairs to an output.
|
|
pos_emb: Positional embedding tensor
|
|
embed_dim_to_check: total dimension of the model.
|
|
num_heads: parallel attention heads.
|
|
in_proj_weight, in_proj_bias: input projection weight and bias.
|
|
dropout_p: probability of an element to be zeroed.
|
|
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
|
training: apply dropout if is ``True``.
|
|
key_padding_mask: if provided, specified padding elements in the key will
|
|
be ignored by the attention. This is an binary mask. When the value is True,
|
|
the corresponding value on the attention layer will be filled with -inf.
|
|
need_weights: output attn_output_weights.
|
|
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
|
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
|
left_context (int): left context (in frames) used during streaming decoding.
|
|
this is used only in real streaming decoding, in other circumstances,
|
|
it MUST be 0.
|
|
|
|
Shape:
|
|
Inputs:
|
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
|
the embedding dimension.
|
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
|
the embedding dimension.
|
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
|
the embedding dimension.
|
|
- pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
|
|
length, N is the batch size, E is the embedding dimension.
|
|
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
|
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
|
will be unchanged. If a BoolTensor is provided, the positions with the
|
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
|
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
|
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
|
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
|
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
|
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
|
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
|
is provided, it will be added to the attention weight.
|
|
|
|
Outputs:
|
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
|
E is the embedding dimension.
|
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
|
L is the target sequence length, S is the source sequence length.
|
|
"""
|
|
|
|
tgt_len, bsz, embed_dim = query.size()
|
|
if not is_jit_tracing():
|
|
assert embed_dim == embed_dim_to_check
|
|
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
|
|
|
head_dim = embed_dim // num_heads
|
|
if not is_jit_tracing():
|
|
assert (
|
|
head_dim * num_heads == embed_dim
|
|
), "embed_dim must be divisible by num_heads"
|
|
|
|
scaling = float(head_dim) ** -0.5
|
|
|
|
if torch.equal(query, key) and torch.equal(key, value):
|
|
# self-attention
|
|
q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk(
|
|
3, dim=-1
|
|
)
|
|
|
|
elif torch.equal(key, value):
|
|
# encoder-decoder attention
|
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
_b = in_proj_bias
|
|
_start = 0
|
|
_end = embed_dim
|
|
_w = in_proj_weight[_start:_end, :]
|
|
if _b is not None:
|
|
_b = _b[_start:_end]
|
|
q = nn.functional.linear(query, _w, _b)
|
|
|
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
_b = in_proj_bias
|
|
_start = embed_dim
|
|
_end = None
|
|
_w = in_proj_weight[_start:, :]
|
|
if _b is not None:
|
|
_b = _b[_start:]
|
|
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
|
|
|
|
else:
|
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
_b = in_proj_bias
|
|
_start = 0
|
|
_end = embed_dim
|
|
_w = in_proj_weight[_start:_end, :]
|
|
if _b is not None:
|
|
_b = _b[_start:_end]
|
|
q = nn.functional.linear(query, _w, _b)
|
|
|
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
_b = in_proj_bias
|
|
_start = embed_dim
|
|
_end = embed_dim * 2
|
|
_w = in_proj_weight[_start:_end, :]
|
|
if _b is not None:
|
|
_b = _b[_start:_end]
|
|
k = nn.functional.linear(key, _w, _b)
|
|
|
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
_b = in_proj_bias
|
|
_start = embed_dim * 2
|
|
_end = None
|
|
_w = in_proj_weight[_start:, :]
|
|
if _b is not None:
|
|
_b = _b[_start:]
|
|
v = nn.functional.linear(value, _w, _b)
|
|
|
|
if attn_mask is not None:
|
|
assert (
|
|
attn_mask.dtype == torch.float32
|
|
or attn_mask.dtype == torch.float64
|
|
or attn_mask.dtype == torch.float16
|
|
or attn_mask.dtype == torch.uint8
|
|
or attn_mask.dtype == torch.bool
|
|
), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
|
|
attn_mask.dtype
|
|
)
|
|
if attn_mask.dtype == torch.uint8:
|
|
warnings.warn(
|
|
"Byte tensor for attn_mask is deprecated. Use bool tensor instead."
|
|
)
|
|
attn_mask = attn_mask.to(torch.bool)
|
|
|
|
if attn_mask.dim() == 2:
|
|
attn_mask = attn_mask.unsqueeze(0)
|
|
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
|
raise RuntimeError("The size of the 2D attn_mask is not correct.")
|
|
elif attn_mask.dim() == 3:
|
|
if list(attn_mask.size()) != [
|
|
bsz * num_heads,
|
|
query.size(0),
|
|
key.size(0),
|
|
]:
|
|
raise RuntimeError("The size of the 3D attn_mask is not correct.")
|
|
else:
|
|
raise RuntimeError(
|
|
"attn_mask's dimension {} is not supported".format(attn_mask.dim())
|
|
)
|
|
# attn_mask's dim is 3 now.
|
|
|
|
# convert ByteTensor key_padding_mask to bool
|
|
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
|
|
warnings.warn(
|
|
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
|
)
|
|
key_padding_mask = key_padding_mask.to(torch.bool)
|
|
|
|
q = (q * scaling).contiguous().view(tgt_len, bsz, num_heads, head_dim)
|
|
k = k.contiguous().view(-1, bsz, num_heads, head_dim)
|
|
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
|
|
|
src_len = k.size(0)
|
|
|
|
if key_padding_mask is not None and not is_jit_tracing():
|
|
assert key_padding_mask.size(0) == bsz, "{} == {}".format(
|
|
key_padding_mask.size(0), bsz
|
|
)
|
|
assert key_padding_mask.size(1) == src_len, "{} == {}".format(
|
|
key_padding_mask.size(1), src_len
|
|
)
|
|
|
|
q = q.transpose(0, 1) # (batch, time1, head, d_k)
|
|
|
|
pos_emb_bsz = pos_emb.size(0)
|
|
if not is_jit_tracing():
|
|
assert pos_emb_bsz in (1, bsz) # actually it is 1
|
|
|
|
p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
|
|
# (batch, 2*time1, head, d_k) --> (batch, head, d_k, 2*time -1)
|
|
p = p.permute(0, 2, 3, 1)
|
|
|
|
q_with_bias_u = (q + self._pos_bias_u()).transpose(
|
|
1, 2
|
|
) # (batch, head, time1, d_k)
|
|
|
|
q_with_bias_v = (q + self._pos_bias_v()).transpose(
|
|
1, 2
|
|
) # (batch, head, time1, d_k)
|
|
|
|
# compute attention score
|
|
# first compute matrix a and matrix c
|
|
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
|
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
|
matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2)
|
|
|
|
# compute matrix b and matrix d
|
|
matrix_bd = torch.matmul(q_with_bias_v, p) # (batch, head, time1, 2*time1-1)
|
|
matrix_bd = self.rel_shift(matrix_bd, left_context)
|
|
|
|
attn_output_weights = matrix_ac + matrix_bd # (batch, head, time1, time2)
|
|
|
|
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1)
|
|
|
|
if not is_jit_tracing():
|
|
assert list(attn_output_weights.size()) == [
|
|
bsz * num_heads,
|
|
tgt_len,
|
|
src_len,
|
|
]
|
|
|
|
if attn_mask is not None:
|
|
if attn_mask.dtype == torch.bool:
|
|
attn_output_weights.masked_fill_(attn_mask, float("-inf"))
|
|
else:
|
|
attn_output_weights += attn_mask
|
|
|
|
if key_padding_mask is not None:
|
|
attn_output_weights = attn_output_weights.view(
|
|
bsz, num_heads, tgt_len, src_len
|
|
)
|
|
attn_output_weights = attn_output_weights.masked_fill(
|
|
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
|
float("-inf"),
|
|
)
|
|
attn_output_weights = attn_output_weights.view(
|
|
bsz * num_heads, tgt_len, src_len
|
|
)
|
|
|
|
attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
|
|
|
|
# If we are using dynamic_chunk_training and setting a limited
|
|
# num_left_chunks, the attention may only see the padding values which
|
|
# will also be masked out by `key_padding_mask`, at this circumstances,
|
|
# the whole column of `attn_output_weights` will be `-inf`
|
|
# (i.e. be `nan` after softmax), so, we fill `0.0` at the masking
|
|
# positions to avoid invalid loss value below.
|
|
if (
|
|
attn_mask is not None
|
|
and attn_mask.dtype == torch.bool
|
|
and key_padding_mask is not None
|
|
):
|
|
if attn_mask.size(0) != 1:
|
|
attn_mask = attn_mask.view(bsz, num_heads, tgt_len, src_len)
|
|
combined_mask = attn_mask | key_padding_mask.unsqueeze(1).unsqueeze(2)
|
|
else:
|
|
# attn_mask.shape == (1, tgt_len, src_len)
|
|
combined_mask = attn_mask.unsqueeze(0) | key_padding_mask.unsqueeze(
|
|
1
|
|
).unsqueeze(2)
|
|
|
|
attn_output_weights = attn_output_weights.view(
|
|
bsz, num_heads, tgt_len, src_len
|
|
)
|
|
attn_output_weights = attn_output_weights.masked_fill(combined_mask, 0.0)
|
|
attn_output_weights = attn_output_weights.view(
|
|
bsz * num_heads, tgt_len, src_len
|
|
)
|
|
|
|
attn_output_weights = nn.functional.dropout(
|
|
attn_output_weights, p=dropout_p, training=training
|
|
)
|
|
|
|
attn_output = torch.bmm(attn_output_weights, v)
|
|
|
|
if not is_jit_tracing():
|
|
assert list(attn_output.size()) == [
|
|
bsz * num_heads,
|
|
tgt_len,
|
|
head_dim,
|
|
]
|
|
|
|
attn_output = (
|
|
attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
|
)
|
|
attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
|
|
|
|
if need_weights:
|
|
# average attention weights over heads
|
|
attn_output_weights = attn_output_weights.view(
|
|
bsz, num_heads, tgt_len, src_len
|
|
)
|
|
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
|
else:
|
|
return attn_output, None
|
|
|
|
|
|
class ConvolutionModule(nn.Module):
|
|
"""ConvolutionModule in Conformer model.
|
|
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py
|
|
|
|
Args:
|
|
channels (int): The number of channels of conv layers.
|
|
kernel_size (int): Kernerl size of conv layers.
|
|
bias (bool): Whether to use bias in conv layers (default=True).
|
|
causal (bool): Whether to use causal convolution.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
kernel_size: int,
|
|
bias: bool = True,
|
|
causal: bool = False,
|
|
) -> None:
|
|
"""Construct an ConvolutionModule object."""
|
|
super(ConvolutionModule, self).__init__()
|
|
# kernerl_size should be a odd number for 'SAME' padding
|
|
assert (kernel_size - 1) % 2 == 0
|
|
self.causal = causal
|
|
|
|
self.pointwise_conv1 = ScaledConv1d(
|
|
channels,
|
|
2 * channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
bias=bias,
|
|
)
|
|
|
|
# after pointwise_conv1 we put x through a gated linear unit (nn.functional.glu).
|
|
# For most layers the normal rms value of channels of x seems to be in the range 1 to 4,
|
|
# but sometimes, for some reason, for layer 0 the rms ends up being very large,
|
|
# between 50 and 100 for different channels. This will cause very peaky and
|
|
# sparse derivatives for the sigmoid gating function, which will tend to make
|
|
# the loss function not learn effectively. (for most layers the average absolute values
|
|
# are in the range 0.5..9.0, and the average p(x>0), i.e. positive proportion,
|
|
# at the output of pointwise_conv1.output is around 0.35 to 0.45 for different
|
|
# layers, which likely breaks down as 0.5 for the "linear" half and
|
|
# 0.2 to 0.3 for the part that goes into the sigmoid. The idea is that if we
|
|
# constrain the rms values to a reasonable range via a constraint of max_abs=10.0,
|
|
# it will be in a better position to start learning something, i.e. to latch onto
|
|
# the correct range.
|
|
self.deriv_balancer1 = ActivationBalancer(
|
|
channel_dim=1, max_abs=10.0, min_positive=0.05, max_positive=1.0
|
|
)
|
|
|
|
self.lorder = kernel_size - 1
|
|
padding = (kernel_size - 1) // 2
|
|
if self.causal:
|
|
padding = 0
|
|
|
|
self.depthwise_conv = ScaledConv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
stride=1,
|
|
padding=padding,
|
|
groups=channels,
|
|
bias=bias,
|
|
)
|
|
|
|
self.deriv_balancer2 = ActivationBalancer(
|
|
channel_dim=1, min_positive=0.05, max_positive=1.0
|
|
)
|
|
|
|
self.activation = DoubleSwish()
|
|
|
|
self.pointwise_conv2 = ScaledConv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
bias=bias,
|
|
initial_scale=0.25,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
x: Tensor,
|
|
cache: Optional[Tensor] = None,
|
|
right_context: int = 0,
|
|
src_key_padding_mask: Optional[Tensor] = None,
|
|
) -> Tuple[Tensor, Tensor]:
|
|
"""Compute convolution module.
|
|
|
|
Args:
|
|
x: Input tensor (#time, batch, channels).
|
|
cache: The cache of depthwise_conv, only used in real streaming
|
|
decoding.
|
|
right_context:
|
|
How many future frames the attention can see in current chunk.
|
|
Note: It's not that each individual frame has `right_context` frames
|
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
|
of right context, some have more.
|
|
|
|
Returns:
|
|
If cache is None return the output tensor (#time, batch, channels).
|
|
If cache is not None, return a tuple of Tensor, the first one is
|
|
the output tensor (#time, batch, channels), the second one is the
|
|
new cache for next chunk (#kernel_size - 1, batch, channels).
|
|
|
|
"""
|
|
# exchange the temporal dimension and the feature dimension
|
|
x = x.permute(1, 2, 0) # (#batch, channels, time).
|
|
|
|
# GLU mechanism
|
|
x = self.pointwise_conv1(x) # (batch, 2*channels, time)
|
|
|
|
x = self.deriv_balancer1(x)
|
|
x = nn.functional.glu(x, dim=1) # (batch, channels, time)
|
|
|
|
# 1D Depthwise Conv
|
|
if src_key_padding_mask is not None:
|
|
x.masked_fill_(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0)
|
|
if self.causal and self.lorder > 0:
|
|
if cache is None:
|
|
# Make depthwise_conv causal by
|
|
# manualy padding self.lorder zeros to the left
|
|
x = nn.functional.pad(x, (self.lorder, 0), "constant", 0.0)
|
|
else:
|
|
assert not self.training, "Cache should be None in training time"
|
|
assert cache.size(0) == self.lorder
|
|
x = torch.cat([cache.permute(1, 2, 0), x], dim=2)
|
|
if right_context > 0:
|
|
cache = x.permute(2, 0, 1)[
|
|
-(self.lorder + right_context) : (-right_context), # noqa
|
|
...,
|
|
]
|
|
else:
|
|
cache = x.permute(2, 0, 1)[-self.lorder :, ...] # noqa
|
|
x = self.depthwise_conv(x)
|
|
|
|
x = self.deriv_balancer2(x)
|
|
x = self.activation(x)
|
|
|
|
x = self.pointwise_conv2(x) # (batch, channel, time)
|
|
|
|
# torch.jit.script requires return types be the same as annotated above
|
|
if cache is None:
|
|
cache = torch.empty(0)
|
|
|
|
return x.permute(2, 0, 1), cache
|
|
|
|
|
|
class Conv2dSubsampling(nn.Module):
|
|
"""Convolutional 2D subsampling (to 1/4 length).
|
|
|
|
Convert an input of shape (N, T, idim) to an output
|
|
with shape (N, T', odim), where
|
|
T' = ((T-1)//2 - 1)//2, which approximates T' == T//4
|
|
|
|
It is based on
|
|
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
layer1_channels: int = 8,
|
|
layer2_channels: int = 32,
|
|
layer3_channels: int = 128,
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
in_channels:
|
|
Number of channels in. The input shape is (N, T, in_channels).
|
|
Caution: It requires: T >=7, in_channels >=7
|
|
out_channels
|
|
Output dim. The output shape is (N, ((T-1)//2 - 1)//2, out_channels)
|
|
layer1_channels:
|
|
Number of channels in layer1
|
|
layer1_channels:
|
|
Number of channels in layer2
|
|
"""
|
|
assert in_channels >= 7
|
|
super().__init__()
|
|
|
|
self.conv = nn.Sequential(
|
|
ScaledConv2d(
|
|
in_channels=1,
|
|
out_channels=layer1_channels,
|
|
kernel_size=3,
|
|
padding=1,
|
|
),
|
|
ActivationBalancer(channel_dim=1),
|
|
DoubleSwish(),
|
|
ScaledConv2d(
|
|
in_channels=layer1_channels,
|
|
out_channels=layer2_channels,
|
|
kernel_size=3,
|
|
stride=2,
|
|
),
|
|
ActivationBalancer(channel_dim=1),
|
|
DoubleSwish(),
|
|
ScaledConv2d(
|
|
in_channels=layer2_channels,
|
|
out_channels=layer3_channels,
|
|
kernel_size=3,
|
|
stride=2,
|
|
),
|
|
ActivationBalancer(channel_dim=1),
|
|
DoubleSwish(),
|
|
)
|
|
self.out = ScaledLinear(
|
|
layer3_channels * (((in_channels - 1) // 2 - 1) // 2), out_channels
|
|
)
|
|
# set learn_eps=False because out_norm is preceded by `out`, and `out`
|
|
# itself has learned scale, so the extra degree of freedom is not
|
|
# needed.
|
|
self.out_norm = BasicNorm(out_channels, learn_eps=False)
|
|
# constrain median of output to be close to zero.
|
|
self.out_balancer = ActivationBalancer(
|
|
channel_dim=-1, min_positive=0.45, max_positive=0.55
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""Subsample x.
|
|
|
|
Args:
|
|
x:
|
|
Its shape is (N, T, idim).
|
|
|
|
Returns:
|
|
Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim)
|
|
"""
|
|
# On entry, x is (N, T, idim)
|
|
x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W)
|
|
x = self.conv(x)
|
|
# Now x is of shape (N, odim, ((T-1)//2 - 1)//2, ((idim-1)//2 - 1)//2)
|
|
b, c, t, f = x.size()
|
|
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
|
# Now x is of shape (N, ((T-1)//2 - 1))//2, odim)
|
|
x = self.out_norm(x)
|
|
x = self.out_balancer(x)
|
|
return x
|
|
|
|
|
|
if __name__ == "__main__":
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
feature_dim = 50
|
|
c = Conformer(num_features=feature_dim, d_model=128, nhead=4)
|
|
batch_size = 5
|
|
seq_len = 20
|
|
# Just make sure the forward pass runs.
|
|
f = c(
|
|
torch.randn(batch_size, seq_len, feature_dim),
|
|
torch.full((batch_size,), seq_len, dtype=torch.int64),
|
|
warmup=0.5,
|
|
)
|