icefall/icefall/transformer_lm/compute_perplexity.py
marcoyang1998 1f0408b103
Support Transformer LM (#750)
* support transformer LM

* show number of parameters during training

* update docstring

* testing files for ppl calculation

* add lm wrampper for rnn and transformer LM

* apply lm wrapper in lm shallow fusion

* small updates

* update decode.py to support LM fusion and LODR

* add export.py

* update CI and workflow

* update decoding results

* fix CI

* remove transformer LM from CI test
2022-12-29 10:53:36 +08:00

196 lines
5.4 KiB
Python

#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
# Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import math
from pathlib import Path
import torch
from dataset import get_dataloader
from train import get_params
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.transformer_lm.model import TransformerLM
from icefall.utils import AttributeDict, setup_logger, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=7,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=1,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="transformer_lm/exp_full_libri_16layer_maxlen200_8gpu",
)
parser.add_argument(
"--lm-data",
type=str,
help="Path to the LM test data for computing perplexity",
default="transformer_lm/libri_lm_training_bpe500/sorted_lm_data-test.pt",
)
parser.add_argument(
"--vocab-size",
type=int,
default=500,
help="Vocabulary size of the model",
)
parser.add_argument(
"--num-layers",
type=int,
default=16,
help="Number of RNN layers the model",
)
parser.add_argument(
"--tie-weights",
type=str2bool,
default=False,
help="""True to share the weights between the input embedding layer and the
last output linear layer
""",
)
parser.add_argument(
"--batch-size",
type=int,
default=50,
help="Number of RNN layers the model",
)
parser.add_argument(
"--max-sent-len",
type=int,
default=100,
help="Number of RNN layers the model",
)
return parser
def main():
parser = get_parser()
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
args.lm_data = Path(args.lm_data)
params = get_params()
params.update(vars(args))
setup_logger(f"{params.exp_dir}/log-ppl/")
logging.info("Computing perplexity started")
logging.info(params)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
logging.info("About to create model")
model = TransformerLM(
vocab_size=params.vocab_size,
d_model=params.encoder_dim,
embedding_dim=params.embedding_dim,
dim_feedforward=params.dim_feedforward,
nhead=params.nhead,
num_layers=params.num_layers,
tie_weights=params.tie_weights,
params=params,
)
if params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
model.to(device)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
model.eval()
num_param = sum([p.numel() for p in model.parameters()])
num_param_requires_grad = sum(
[p.numel() for p in model.parameters() if p.requires_grad]
)
logging.info(f"Number of model parameters: {num_param}")
logging.info(
f"Number of model parameters (requires_grad): "
f"{num_param_requires_grad} "
f"({num_param_requires_grad/num_param_requires_grad*100}%)"
)
logging.info(f"Loading LM test data from {params.lm_data}")
test_dl = get_dataloader(
filename=params.lm_data,
is_distributed=False,
params=params,
)
tot_loss = 0.0
num_tokens = 0
num_sentences = 0
for batch_idx, batch in enumerate(test_dl):
x, y, sentence_lengths = batch
x = x.to(device)
y = y.to(device)
sentence_lengths = sentence_lengths.to(device)
nll = model(x, y, sentence_lengths)
loss = nll.sum().cpu().item()
tot_loss += loss
num_tokens += sentence_lengths.sum().cpu().item()
num_sentences += x.size(0)
ppl = math.exp(tot_loss / num_tokens)
logging.info(
f"total nll: {tot_loss}, num tokens: {num_tokens}, "
f"num sentences: {num_sentences}, ppl: {ppl:.3f}"
)
if __name__ == "__main__":
main()