mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-11 11:02:29 +00:00
* support transformer LM * show number of parameters during training * update docstring * testing files for ppl calculation * add lm wrampper for rnn and transformer LM * apply lm wrapper in lm shallow fusion * small updates * update decode.py to support LM fusion and LODR * add export.py * update CI and workflow * update decoding results * fix CI * remove transformer LM from CI test
196 lines
5.4 KiB
Python
196 lines
5.4 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
|
# Xiaoyu Yang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from dataset import get_dataloader
|
|
from train import get_params
|
|
|
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
|
from icefall.transformer_lm.model import TransformerLM
|
|
from icefall.utils import AttributeDict, setup_logger, str2bool
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=7,
|
|
help="It specifies the checkpoint to use for decoding."
|
|
"Note: Epoch counts from 0.",
|
|
)
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=1,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch'. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="transformer_lm/exp_full_libri_16layer_maxlen200_8gpu",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lm-data",
|
|
type=str,
|
|
help="Path to the LM test data for computing perplexity",
|
|
default="transformer_lm/libri_lm_training_bpe500/sorted_lm_data-test.pt",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--vocab-size",
|
|
type=int,
|
|
default=500,
|
|
help="Vocabulary size of the model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-layers",
|
|
type=int,
|
|
default=16,
|
|
help="Number of RNN layers the model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tie-weights",
|
|
type=str2bool,
|
|
default=False,
|
|
help="""True to share the weights between the input embedding layer and the
|
|
last output linear layer
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--batch-size",
|
|
type=int,
|
|
default=50,
|
|
help="Number of RNN layers the model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--max-sent-len",
|
|
type=int,
|
|
default=100,
|
|
help="Number of RNN layers the model",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
args.lm_data = Path(args.lm_data)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
setup_logger(f"{params.exp_dir}/log-ppl/")
|
|
logging.info("Computing perplexity started")
|
|
logging.info(params)
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"Device: {device}")
|
|
|
|
logging.info("About to create model")
|
|
model = TransformerLM(
|
|
vocab_size=params.vocab_size,
|
|
d_model=params.encoder_dim,
|
|
embedding_dim=params.embedding_dim,
|
|
dim_feedforward=params.dim_feedforward,
|
|
nhead=params.nhead,
|
|
num_layers=params.num_layers,
|
|
tie_weights=params.tie_weights,
|
|
params=params,
|
|
)
|
|
|
|
if params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
model.to(device)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if start >= 0:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
|
|
model.eval()
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
num_param_requires_grad = sum(
|
|
[p.numel() for p in model.parameters() if p.requires_grad]
|
|
)
|
|
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
logging.info(
|
|
f"Number of model parameters (requires_grad): "
|
|
f"{num_param_requires_grad} "
|
|
f"({num_param_requires_grad/num_param_requires_grad*100}%)"
|
|
)
|
|
|
|
logging.info(f"Loading LM test data from {params.lm_data}")
|
|
test_dl = get_dataloader(
|
|
filename=params.lm_data,
|
|
is_distributed=False,
|
|
params=params,
|
|
)
|
|
|
|
tot_loss = 0.0
|
|
num_tokens = 0
|
|
num_sentences = 0
|
|
for batch_idx, batch in enumerate(test_dl):
|
|
x, y, sentence_lengths = batch
|
|
x = x.to(device)
|
|
y = y.to(device)
|
|
sentence_lengths = sentence_lengths.to(device)
|
|
|
|
nll = model(x, y, sentence_lengths)
|
|
loss = nll.sum().cpu().item()
|
|
|
|
tot_loss += loss
|
|
num_tokens += sentence_lengths.sum().cpu().item()
|
|
num_sentences += x.size(0)
|
|
|
|
ppl = math.exp(tot_loss / num_tokens)
|
|
logging.info(
|
|
f"total nll: {tot_loss}, num tokens: {num_tokens}, "
|
|
f"num sentences: {num_sentences}, ppl: {ppl:.3f}"
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|