mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* Begin to add RNN-T training for librispeech. * Copy files from conformer_ctc. Will edit it. * Use conformer/transformer model as encoder. * Begin to add training script. * Add training code. * Remove long utterances to avoid OOM when a large max_duraiton is used. * Begin to add decoding script. * Add decoding script. * Minor fixes. * Add beam search. * Use LSTM layers for the encoder. Need more tunings. * Use stateless decoder. * Minor fixes to make it ready for merge. * Fix README. * Update RESULT.md to include RNN-T Conformer. * Minor fixes. * Fix tests. * Minor fixes. * Minor fixes. * Fix tests.
105 lines
3.0 KiB
Python
105 lines
3.0 KiB
Python
# Copyright 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import torch
|
|
|
|
|
|
class Noam(object):
|
|
"""
|
|
Implements Noam optimizer.
|
|
|
|
Proposed in
|
|
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
|
|
|
|
Modified from
|
|
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
|
|
|
|
Args:
|
|
params:
|
|
iterable of parameters to optimize or dicts defining parameter groups
|
|
model_size:
|
|
attention dimension of the transformer model
|
|
factor:
|
|
learning rate factor
|
|
warm_step:
|
|
warmup steps
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
params,
|
|
model_size: int = 256,
|
|
factor: float = 10.0,
|
|
warm_step: int = 25000,
|
|
weight_decay=0,
|
|
) -> None:
|
|
"""Construct an Noam object."""
|
|
self.optimizer = torch.optim.Adam(
|
|
params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
|
|
)
|
|
self._step = 0
|
|
self.warmup = warm_step
|
|
self.factor = factor
|
|
self.model_size = model_size
|
|
self._rate = 0
|
|
|
|
@property
|
|
def param_groups(self):
|
|
"""Return param_groups."""
|
|
return self.optimizer.param_groups
|
|
|
|
def step(self):
|
|
"""Update parameters and rate."""
|
|
self._step += 1
|
|
rate = self.rate()
|
|
for p in self.optimizer.param_groups:
|
|
p["lr"] = rate
|
|
self._rate = rate
|
|
self.optimizer.step()
|
|
|
|
def rate(self, step=None):
|
|
"""Implement `lrate` above."""
|
|
if step is None:
|
|
step = self._step
|
|
return (
|
|
self.factor
|
|
* self.model_size ** (-0.5)
|
|
* min(step ** (-0.5), step * self.warmup ** (-1.5))
|
|
)
|
|
|
|
def zero_grad(self):
|
|
"""Reset gradient."""
|
|
self.optimizer.zero_grad()
|
|
|
|
def state_dict(self):
|
|
"""Return state_dict."""
|
|
return {
|
|
"_step": self._step,
|
|
"warmup": self.warmup,
|
|
"factor": self.factor,
|
|
"model_size": self.model_size,
|
|
"_rate": self._rate,
|
|
"optimizer": self.optimizer.state_dict(),
|
|
}
|
|
|
|
def load_state_dict(self, state_dict):
|
|
"""Load state_dict."""
|
|
for key, value in state_dict.items():
|
|
if key == "optimizer":
|
|
self.optimizer.load_state_dict(state_dict["optimizer"])
|
|
else:
|
|
setattr(self, key, value)
|