mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* Begin to add RNN-T training for librispeech. * Copy files from conformer_ctc. Will edit it. * Use conformer/transformer model as encoder. * Begin to add training script. * Add training code. * Remove long utterances to avoid OOM when a large max_duraiton is used. * Begin to add decoding script. * Add decoding script. * Minor fixes. * Add beam search. * Use LSTM layers for the encoder. Need more tunings. * Use stateless decoder. * Minor fixes to make it ready for merge. * Fix README. * Update RESULT.md to include RNN-T Conformer. * Minor fixes. * Fix tests. * Minor fixes. * Minor fixes. * Fix tests.
300 lines
8.1 KiB
Python
Executable File
300 lines
8.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Usage:
|
|
|
|
./transducer/pretrained.py \
|
|
--checkpoint ./transducer/exp/pretrained.pt \
|
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
|
--method greedy_search \
|
|
/path/to/foo.wav \
|
|
/path/to/bar.wav \
|
|
|
|
You can also use `./transducer/exp/epoch-xx.pt`.
|
|
|
|
Note: ./transducer/exp/pretrained.pt is generated by
|
|
./transducer/export.py
|
|
"""
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
from typing import List
|
|
|
|
import kaldifeat
|
|
import sentencepiece as spm
|
|
import torch
|
|
import torchaudio
|
|
from beam_search import beam_search, greedy_search
|
|
from conformer import Conformer
|
|
from decoder import Decoder
|
|
from joiner import Joiner
|
|
from model import Transducer
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
|
|
from icefall.env import get_env_info
|
|
from icefall.utils import AttributeDict
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--checkpoint",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the checkpoint. "
|
|
"The checkpoint is assumed to be saved by "
|
|
"icefall.checkpoint.save_checkpoint().",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
help="""Path to bpe.model.
|
|
Used only when method is ctc-decoding.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--method",
|
|
type=str,
|
|
default="greedy_search",
|
|
help="""Possible values are:
|
|
- greedy_search
|
|
- beam_search
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"sound_files",
|
|
type=str,
|
|
nargs="+",
|
|
help="The input sound file(s) to transcribe. "
|
|
"Supported formats are those supported by torchaudio.load(). "
|
|
"For example, wav and flac are supported. "
|
|
"The sample rate has to be 16kHz.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--beam-size",
|
|
type=int,
|
|
default=5,
|
|
help="Used only when --method is beam_search",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
params = AttributeDict(
|
|
{
|
|
"sample_rate": 16000,
|
|
# parameters for conformer
|
|
"feature_dim": 80,
|
|
"encoder_out_dim": 512,
|
|
"subsampling_factor": 4,
|
|
"attention_dim": 512,
|
|
"nhead": 8,
|
|
"dim_feedforward": 2048,
|
|
"num_encoder_layers": 12,
|
|
"vgg_frontend": False,
|
|
"use_feat_batchnorm": True,
|
|
# decoder params
|
|
"decoder_embedding_dim": 1024,
|
|
"num_decoder_layers": 4,
|
|
"decoder_hidden_dim": 512,
|
|
"env_info": get_env_info(),
|
|
}
|
|
)
|
|
return params
|
|
|
|
|
|
def get_encoder_model(params: AttributeDict):
|
|
encoder = Conformer(
|
|
num_features=params.feature_dim,
|
|
output_dim=params.encoder_out_dim,
|
|
subsampling_factor=params.subsampling_factor,
|
|
d_model=params.attention_dim,
|
|
nhead=params.nhead,
|
|
dim_feedforward=params.dim_feedforward,
|
|
num_encoder_layers=params.num_encoder_layers,
|
|
vgg_frontend=params.vgg_frontend,
|
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
|
)
|
|
return encoder
|
|
|
|
|
|
def get_decoder_model(params: AttributeDict):
|
|
decoder = Decoder(
|
|
vocab_size=params.vocab_size,
|
|
embedding_dim=params.decoder_embedding_dim,
|
|
blank_id=params.blank_id,
|
|
sos_id=params.sos_id,
|
|
num_layers=params.num_decoder_layers,
|
|
hidden_dim=params.decoder_hidden_dim,
|
|
output_dim=params.encoder_out_dim,
|
|
)
|
|
return decoder
|
|
|
|
|
|
def get_joiner_model(params: AttributeDict):
|
|
joiner = Joiner(
|
|
input_dim=params.encoder_out_dim,
|
|
output_dim=params.vocab_size,
|
|
)
|
|
return joiner
|
|
|
|
|
|
def get_transducer_model(params: AttributeDict):
|
|
encoder = get_encoder_model(params)
|
|
decoder = get_decoder_model(params)
|
|
joiner = get_joiner_model(params)
|
|
|
|
model = Transducer(
|
|
encoder=encoder,
|
|
decoder=decoder,
|
|
joiner=joiner,
|
|
)
|
|
return model
|
|
|
|
|
|
def read_sound_files(
|
|
filenames: List[str], expected_sample_rate: float
|
|
) -> List[torch.Tensor]:
|
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
|
Args:
|
|
filenames:
|
|
A list of sound filenames.
|
|
expected_sample_rate:
|
|
The expected sample rate of the sound files.
|
|
Returns:
|
|
Return a list of 1-D float32 torch tensors.
|
|
"""
|
|
ans = []
|
|
for f in filenames:
|
|
wave, sample_rate = torchaudio.load(f)
|
|
assert sample_rate == expected_sample_rate, (
|
|
f"expected sample rate: {expected_sample_rate}. "
|
|
f"Given: {sample_rate}"
|
|
)
|
|
# We use only the first channel
|
|
ans.append(wave[0])
|
|
return ans
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
|
|
params = get_params()
|
|
|
|
params.update(vars(args))
|
|
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(params.bpe_model)
|
|
|
|
# <blk> and <sos/eos> are defined in local/train_bpe_model.py
|
|
params.blank_id = sp.piece_to_id("<blk>")
|
|
params.sos_id = sp.piece_to_id("<sos/eos>")
|
|
params.vocab_size = sp.get_piece_size()
|
|
|
|
logging.info(f"{params}")
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
logging.info("Creating model")
|
|
model = get_transducer_model(params)
|
|
|
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
|
model.load_state_dict(checkpoint["model"], strict=False)
|
|
model.to(device)
|
|
model.eval()
|
|
model.device = device
|
|
|
|
logging.info("Constructing Fbank computer")
|
|
opts = kaldifeat.FbankOptions()
|
|
opts.device = device
|
|
opts.frame_opts.dither = 0
|
|
opts.frame_opts.snip_edges = False
|
|
opts.frame_opts.samp_freq = params.sample_rate
|
|
opts.mel_opts.num_bins = params.feature_dim
|
|
|
|
fbank = kaldifeat.Fbank(opts)
|
|
|
|
logging.info(f"Reading sound files: {params.sound_files}")
|
|
waves = read_sound_files(
|
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
|
)
|
|
waves = [w.to(device) for w in waves]
|
|
|
|
logging.info("Decoding started")
|
|
features = fbank(waves)
|
|
feature_lengths = [f.size(0) for f in features]
|
|
|
|
features = pad_sequence(
|
|
features, batch_first=True, padding_value=math.log(1e-10)
|
|
)
|
|
|
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
|
|
|
with torch.no_grad():
|
|
encoder_out, encoder_out_lens = model.encoder(
|
|
x=features, x_lens=feature_lengths
|
|
)
|
|
|
|
num_waves = encoder_out.size(0)
|
|
hyps = []
|
|
for i in range(num_waves):
|
|
# fmt: off
|
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
|
# fmt: on
|
|
if params.method == "greedy_search":
|
|
hyp = greedy_search(model=model, encoder_out=encoder_out_i)
|
|
elif params.method == "beam_search":
|
|
hyp = beam_search(
|
|
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
|
)
|
|
else:
|
|
raise ValueError(f"Unsupported method: {params.method}")
|
|
|
|
hyps.append(sp.decode(hyp).split())
|
|
|
|
s = "\n"
|
|
for filename, hyp in zip(params.sound_files, hyps):
|
|
words = " ".join(hyp)
|
|
s += f"{filename}:\n{words}\n\n"
|
|
logging.info(s)
|
|
|
|
logging.info("Decoding Done")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = (
|
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
)
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|