icefall/egs/librispeech/ASR/local/compile_lg.py
2022-02-10 20:28:59 +08:00

145 lines
3.8 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes as input lang_dir and generates LG from
- L, the lexicon, built from lang_dir/L_disambig.pt
Caution: We use a lexicon that contains disambiguation symbols
- G, the LM, built from data/lm/G_3_gram.fst.txt
The generated LG is saved in $lang_dir/LG.fst
"""
import argparse
import logging
from pathlib import Path
import k2
import torch
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lang-dir",
type=str,
help="""Input and output directory.
""",
)
return parser.parse_args()
def compile_LG(lang_dir: str) -> k2.Fsa:
"""
Args:
lang_dir:
The language directory, e.g., data/lang_phone or data/lang_bpe_500.
Return:
An FST representing LG.
"""
tokens = k2.SymbolTable.from_file(f"{lang_dir}/tokens.txt")
assert "#0" in tokens
first_token_disambig_id = tokens["#0"]
logging.info(f"first token disambig ID: {first_token_disambig_id}")
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
if Path("data/lm/G_3_gram.pt").is_file():
logging.info("Loading pre-compiled G_3_gram")
d = torch.load("data/lm/G_3_gram.pt")
G = k2.Fsa.from_dict(d)
else:
logging.info("Loading G_3_gram.fst.txt")
with open("data/lm/G_3_gram.fst.txt") as f:
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
del G.aux_labels
torch.save(G.as_dict(), "data/lm/G_3_gram.pt")
L = k2.arc_sort(L)
G = k2.arc_sort(G)
logging.info("Composing L and G")
LG = k2.compose(L, G)
logging.info(f"LG shape: {LG.shape}, num_arcs: {LG.num_arcs}")
del LG.aux_labels
logging.info("Connecting LG")
LG = k2.connect(LG)
logging.info(
f"LG shape after k2.connect: {LG.shape}, num_arcs: {LG.num_arcs}"
)
logging.info("Determinizing LG")
LG = k2.determinize(LG)
logging.info(
f"LG shape after k2.determinize: {LG.shape}, num_arcs: {LG.num_arcs}"
)
logging.info("Connecting LG after k2.determinize")
LG = k2.connect(LG)
logging.info(
f"LG shape after k2.connect: {LG.shape}, num_arcs: {LG.num_arcs}"
)
logging.info("Arc sorting LG")
LG = k2.arc_sort(LG)
logging.info(f"LG properties: {LG.properties_str}")
# Possible properties is:
# "Valid|Nonempty|ArcSorted|ArcSortedAndDeterministic|EpsilonFree|MaybeAccessible|MaybeCoaccessible" # noqa
logging.info(
"Caution: LG is deterministic and contains disambig symbols!!!"
)
return LG
def main():
args = get_args()
lang_dir = Path(args.lang_dir)
out_filename = lang_dir / "LG.pt"
if out_filename.is_file():
logging.info(f"{out_filename} already exists - skipping")
return
logging.info(f"Processing {lang_dir}")
LG = compile_LG(lang_dir)
logging.info(f"Saving LG to {out_filename}")
torch.save(LG.as_dict(), out_filename)
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
main()