icefall/egs/libricss/SURT/local/add_source_feats.py
Desh Raj a4402b88e6
SURT multi-talker ASR recipe (#1126)
* merge upstream

* add SURT model and training

* add libricss decoding

* add chunk width randomization

* decode SURT with libricss

* initial commit for zipformer_ctc

* remove unwanted changes

* remove changes to other recipe

* fix zipformer softlink

* fix for JIT export

* add missing file

* fix symbolic links

* update results

* clean commit for SURT recipe

* training libricss surt model

* remove unwanted files

* remove unwanted changes

* remove changes in librispeech

* change some files to symlinks

* remove unwanted changes in utils

* add export script

* add README

* minor fix in README

* add assets for README

* replace some files with symlinks

* remove unused decoding methods

* fix symlink

* address comments from @csukuangfj
2023-07-04 19:25:58 +08:00

86 lines
3.5 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2022 Johns Hopkins University (authors: Desh Raj)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file adds source features as temporal arrays to the mixture manifests.
It looks for manifests in the directory data/manifests.
"""
import logging
from pathlib import Path
import numpy as np
from lhotse import CutSet, LilcomChunkyWriter, load_manifest, load_manifest_lazy
from tqdm import tqdm
def add_source_feats(num_jobs=1):
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
for type_affix in ["full", "ov40"]:
logging.info(f"Adding source features for {type_affix}")
mixed_name_clean = f"train_clean_{type_affix}"
mixed_name_rvb = f"train_rvb_{type_affix}"
logging.info("Reading mixed cuts")
mixed_cuts_clean = load_manifest_lazy(
src_dir / f"cuts_{mixed_name_clean}.jsonl.gz"
)
mixed_cuts_rvb = load_manifest_lazy(src_dir / f"cuts_{mixed_name_rvb}.jsonl.gz")
logging.info("Reading source cuts")
source_cuts = load_manifest(src_dir / "librispeech_cuts_train_trimmed.jsonl.gz")
logging.info("Adding source features to the mixed cuts")
with tqdm() as pbar, CutSet.open_writer(
src_dir / f"cuts_{mixed_name_clean}_sources.jsonl.gz"
) as cut_writer_clean, CutSet.open_writer(
src_dir / f"cuts_{mixed_name_rvb}_sources.jsonl.gz"
) as cut_writer_rvb, LilcomChunkyWriter(
output_dir / f"feats_train_{type_affix}_sources"
) as source_feat_writer:
for cut_clean, cut_rvb in zip(mixed_cuts_clean, mixed_cuts_rvb):
assert cut_rvb.id == cut_clean.id + "_rvb"
# Create source_feats and source_feat_offsets
# (See `lhotse.datasets.K2SurtDataset` for details)
source_feats = []
source_feat_offsets = []
cur_offset = 0
for sup in sorted(
cut_clean.supervisions, key=lambda s: (s.start, s.speaker)
):
source_cut = source_cuts[sup.id]
source_feats.append(source_cut.load_features())
source_feat_offsets.append(cur_offset)
cur_offset += source_cut.num_frames
cut_clean.source_feats = source_feat_writer.store_array(
cut_clean.id, np.concatenate(source_feats, axis=0)
)
cut_clean.source_feat_offsets = source_feat_offsets
cut_writer_clean.write(cut_clean)
cut_rvb.source_feats = cut_clean.source_feats
cut_rvb.source_feat_offsets = cut_clean.source_feat_offsets
cut_writer_rvb.write(cut_rvb)
pbar.update(1)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
add_source_feats()