mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* add decode seamlessm4t * add requirements * add decoding with avg model * add token files * add custom tokenizer * support deepspeed to finetune large model * support large-v3 * add model saving * using monkey patch to replace models * add manifest dir option
928 lines
30 KiB
Python
Executable File
928 lines
30 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
|
|
# 2024 Yuekai Zhang
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Usage:
|
|
|
|
#fine-tuning with deepspeed zero stage 1
|
|
torchrun --nproc-per-node 8 ./whisper/train.py \
|
|
--max-duration 200 \
|
|
--exp-dir whisper/exp_large_v2 \
|
|
--model-name large-v2 \
|
|
--manifest-dir data/fbank_whisper \
|
|
--deepspeed \
|
|
--deepspeed_config ./whisper/ds_config_zero1.json
|
|
|
|
# fine-tuning with ddp
|
|
torchrun --nproc-per-node 8 ./whisper/train.py \
|
|
--max-duration 200 \
|
|
--exp-dir whisper/exp_medium \
|
|
--manifest-dir data/fbank_whisper \
|
|
--base-lr 1e-5 \
|
|
--model-name medium
|
|
"""
|
|
|
|
|
|
import argparse
|
|
import copy
|
|
import logging
|
|
import random
|
|
import warnings
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import deepspeed
|
|
import k2
|
|
import optim
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
import torch.nn as nn
|
|
import whisper
|
|
from asr_datamodule import AishellAsrDataModule
|
|
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
|
|
from label_smoothing import LabelSmoothingLoss
|
|
from lhotse import CutSet, load_manifest
|
|
from lhotse.cut import Cut
|
|
from lhotse.dataset.sampling.base import CutSampler
|
|
from lhotse.utils import fix_random_seed
|
|
from optim import Eden, ScaledAdam
|
|
from torch import Tensor
|
|
from torch.cuda.amp import GradScaler
|
|
from torch.nn.functional import pad as pad_tensor
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
|
|
|
from icefall import diagnostics
|
|
from icefall.checkpoint import load_checkpoint, remove_checkpoints
|
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
|
from icefall.checkpoint import update_averaged_model
|
|
from icefall.dist import cleanup_dist, get_rank, get_world_size, setup_dist
|
|
from icefall.env import get_env_info
|
|
from icefall.hooks import register_inf_check_hooks
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
MetricsTracker,
|
|
filter_uneven_sized_batch,
|
|
setup_logger,
|
|
str2bool,
|
|
)
|
|
|
|
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
|
|
|
|
|
|
def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None:
|
|
if isinstance(model, DDP):
|
|
# get underlying nn.Module
|
|
model = model.module
|
|
for module in model.modules():
|
|
if hasattr(module, "batch_count"):
|
|
module.batch_count = batch_count
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tensorboard",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Should various information be logged in tensorboard.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-epochs",
|
|
type=int,
|
|
default=10,
|
|
help="Number of epochs to train.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--start-epoch",
|
|
type=int,
|
|
default=1,
|
|
help="""Resume training from this epoch. It should be positive.
|
|
If larger than 1, it will load checkpoint from
|
|
exp-dir/epoch-{start_epoch-1}.pt
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--start-batch",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --start-epoch is ignored and
|
|
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="pruned_transducer_stateless7/exp",
|
|
help="""The experiment dir.
|
|
It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--model-name",
|
|
type=str,
|
|
default="large-v2",
|
|
choices=["large-v2", "large-v3", "medium", "small", "tiny"],
|
|
help="""The model name to use.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--base-lr", type=float, default=1e-5, help="The base learning rate."
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lr-batches",
|
|
type=float,
|
|
default=5000,
|
|
help="""Number of steps that affects how rapidly the learning rate
|
|
decreases. We suggest not to change this.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lr-epochs",
|
|
type=float,
|
|
default=6,
|
|
help="""Number of epochs that affects how rapidly the learning rate decreases.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--seed",
|
|
type=int,
|
|
default=42,
|
|
help="The seed for random generators intended for reproducibility",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--print-diagnostics",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Accumulate stats on activations, print them and exit.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--inf-check",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Add hooks to check for infinite module outputs and gradients.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--keep-last-k",
|
|
type=int,
|
|
default=30,
|
|
help="""Only keep this number of checkpoints on disk.
|
|
For instance, if it is 3, there are only 3 checkpoints
|
|
in the exp-dir with filenames `checkpoint-xxx.pt`.
|
|
It does not affect checkpoints with name `epoch-xxx.pt`.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--average-period",
|
|
type=int,
|
|
default=200,
|
|
help="""Update the averaged model, namely `model_avg`, after processing
|
|
this number of batches. `model_avg` is a separate version of model,
|
|
in which each floating-point parameter is the average of all the
|
|
parameters from the start of training. Each time we take the average,
|
|
we do: `model_avg = model * (average_period / batch_idx_train) +
|
|
model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-fp16",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to use half precision training.",
|
|
)
|
|
|
|
parser = deepspeed.add_config_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
"""Return a dict containing training parameters.
|
|
|
|
All training related parameters that are not passed from the commandline
|
|
are saved in the variable `params`.
|
|
|
|
Commandline options are merged into `params` after they are parsed, so
|
|
you can also access them via `params`.
|
|
|
|
Explanation of options saved in `params`:
|
|
|
|
- frame_shift_ms: The frame shift in milliseconds.
|
|
- allowed_excess_duration_ratio: The allowed excess duration ratio.
|
|
- best_train_loss: The best training loss so far.
|
|
- best_valid_loss: The best validation loss so far.
|
|
- best_train_epoch: The epoch where the best training loss is achieved.
|
|
- best_valid_epoch: The epoch where the best validation loss is achieved.
|
|
- batch_idx_train: The batch index of the current batch.
|
|
- log_interval: Log training stats every `log_interval` batches.
|
|
- reset_interval: Reset the stats every `reset_interval` batches.
|
|
- valid_interval: Run validation every `valid_interval` batches.
|
|
- env_info: The environment information.
|
|
"""
|
|
params = AttributeDict(
|
|
{
|
|
"frame_shift_ms": 10.0,
|
|
"subsampling_factor": 2,
|
|
"allowed_excess_duration_ratio": 0.1,
|
|
"best_train_loss": float("inf"),
|
|
"best_valid_loss": float("inf"),
|
|
"best_train_epoch": -1,
|
|
"best_valid_epoch": -1,
|
|
"batch_idx_train": 0,
|
|
"log_interval": 50,
|
|
"reset_interval": 200,
|
|
"valid_interval": 5000,
|
|
"env_info": get_env_info(),
|
|
}
|
|
)
|
|
|
|
return params
|
|
|
|
|
|
def load_checkpoint_if_available(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
model_avg: nn.Module = None,
|
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
scheduler: Optional[LRSchedulerType] = None,
|
|
) -> Optional[Dict[str, Any]]:
|
|
"""Load checkpoint from file.
|
|
|
|
If params.start_batch is positive, it will load the checkpoint from
|
|
`params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
|
|
params.start_epoch is larger than 1, it will load the checkpoint from
|
|
`params.start_epoch - 1`.
|
|
|
|
Apart from loading state dict for `model` and `optimizer` it also updates
|
|
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
|
and `best_valid_loss` in `params`.
|
|
|
|
Args:
|
|
params:
|
|
The return value of :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
optimizer:
|
|
The optimizer that we are using.
|
|
scheduler:
|
|
The scheduler that we are using.
|
|
Returns:
|
|
Return a dict containing previously saved training info.
|
|
"""
|
|
if params.start_batch > 0:
|
|
filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
|
|
elif params.start_epoch > 1:
|
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
|
else:
|
|
return None
|
|
|
|
assert filename.is_file(), f"{filename} does not exist!"
|
|
|
|
saved_params = load_checkpoint(
|
|
filename,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
)
|
|
|
|
keys = [
|
|
"best_train_epoch",
|
|
"best_valid_epoch",
|
|
"batch_idx_train",
|
|
"best_train_loss",
|
|
"best_valid_loss",
|
|
]
|
|
for k in keys:
|
|
params[k] = saved_params[k]
|
|
|
|
if params.start_batch > 0:
|
|
if "cur_epoch" in saved_params:
|
|
params["start_epoch"] = saved_params["cur_epoch"]
|
|
|
|
return saved_params
|
|
|
|
|
|
def save_checkpoint(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
model_avg: Optional[nn.Module] = None,
|
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
scheduler: Optional[LRSchedulerType] = None,
|
|
sampler: Optional[CutSampler] = None,
|
|
scaler: Optional[GradScaler] = None,
|
|
rank: int = 0,
|
|
) -> None:
|
|
"""Save model, optimizer, scheduler and training stats to file.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
optimizer:
|
|
The optimizer used in the training.
|
|
sampler:
|
|
The sampler for the training dataset.
|
|
scaler:
|
|
The scaler used for mix precision training.
|
|
"""
|
|
if rank != 0:
|
|
return
|
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
|
save_checkpoint_impl(
|
|
filename=filename,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
params=params,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
|
|
if params.best_train_epoch == params.cur_epoch:
|
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
|
copyfile(src=filename, dst=best_train_filename)
|
|
|
|
if params.best_valid_epoch == params.cur_epoch:
|
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
|
copyfile(src=filename, dst=best_valid_filename)
|
|
|
|
|
|
def compute_loss(
|
|
params: AttributeDict,
|
|
tokenizer: whisper.tokenizer.Tokenizer,
|
|
model: Union[nn.Module, DDP],
|
|
batch: dict,
|
|
is_training: bool,
|
|
) -> Tuple[Tensor, MetricsTracker]:
|
|
"""
|
|
Compute the loss for the given batch.
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
tokenizer:
|
|
The tokenizer used to encode the text.
|
|
model:
|
|
The model for training.
|
|
batch:
|
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
|
for the content in it.
|
|
is_training:
|
|
Whether it is training.
|
|
Returns:
|
|
Return a tuple of two elements. The first element is the loss tensor.
|
|
"""
|
|
# For the uneven-sized batch, the total duration after padding would possibly
|
|
# cause OOM. Hence, for each batch, which is sorted descendingly by length,
|
|
# we simply drop the last few shortest samples, so that the retained total frames
|
|
# (after padding) would not exceed `allowed_max_frames`:
|
|
# `allowed_max_frames = int(max_frames * (1.0 + allowed_excess_duration_ratio))`,
|
|
# where `max_frames = max_duration * 1000 // frame_shift_ms`.
|
|
# We set allowed_excess_duration_ratio=0.1.
|
|
if isinstance(model, DDP):
|
|
# get underlying nn.Module
|
|
model = model.module
|
|
|
|
def _batch_tensors(tensors: List[Tensor], pad_value: Any) -> Tensor:
|
|
padding_size = max(tensor.shape[0] for tensor in tensors)
|
|
dims = len(tensors[0].shape)
|
|
padded_tensors = []
|
|
for tensor in tensors:
|
|
padding = [0] * 2 * dims
|
|
padding[-1] = padding_size - tensor.shape[0]
|
|
padded_tensors.append(pad_tensor(tensor, padding, "constant", pad_value))
|
|
return torch.stack([tensor for tensor in padded_tensors], dim=0)
|
|
|
|
max_frames = params.max_duration * 1000 // params.frame_shift_ms
|
|
allowed_max_frames = int(max_frames * (1.0 + params.allowed_excess_duration_ratio))
|
|
batch = filter_uneven_sized_batch(batch, allowed_max_frames)
|
|
|
|
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
|
feature = batch["inputs"]
|
|
|
|
assert feature.ndim == 3
|
|
feature = feature.to(device)
|
|
feature = feature.transpose(1, 2) # (N, C, T)
|
|
|
|
supervisions = batch["supervisions"]
|
|
feature_lens = supervisions["num_frames"].to(device)
|
|
|
|
batch_idx_train = params.batch_idx_train
|
|
|
|
texts = batch["supervisions"]["text"]
|
|
# remove spaces in texts
|
|
texts = [text.replace(" ", "") for text in texts]
|
|
|
|
text_tokens_list = [
|
|
list(tokenizer.sot_sequence_including_notimestamps)
|
|
+ tokenizer.encode(text)
|
|
+ [tokenizer.eot]
|
|
for text in texts
|
|
]
|
|
# convert it to torch tensor
|
|
text_tokens_list = [
|
|
torch.LongTensor(text_tokens) for text_tokens in text_tokens_list
|
|
]
|
|
|
|
# 50256 is the index of <pad> for all whisper models
|
|
prev_outputs_tokens = _batch_tensors(
|
|
[tokens[:-1] for tokens in text_tokens_list], pad_value=50256
|
|
)
|
|
target_tokens = _batch_tensors(
|
|
[tokens[1:] for tokens in text_tokens_list], pad_value=50256
|
|
)
|
|
target_lengths = torch.LongTensor(
|
|
[tokens.shape[0] - 1 for tokens in text_tokens_list]
|
|
)
|
|
|
|
decoder_criterion = LabelSmoothingLoss(
|
|
ignore_index=50256, label_smoothing=0.1, reduction="sum"
|
|
)
|
|
|
|
# ignore the first 3 tokens, which are always <|lang_id|>, <|transcibe|>, <|notimestampes|>
|
|
ignore_prefix_size = 3
|
|
with torch.set_grad_enabled(is_training):
|
|
encoder_out = model.encoder(feature)
|
|
text_logits = model.decoder(prev_outputs_tokens.to(device), encoder_out)
|
|
text_logits = text_logits[:, ignore_prefix_size:, :]
|
|
target_tokens = target_tokens[:, ignore_prefix_size:]
|
|
loss = decoder_criterion(text_logits, target_tokens.to(device))
|
|
|
|
assert loss.requires_grad == is_training
|
|
|
|
info = MetricsTracker()
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
|
|
|
# Note: We use reduction=sum while computing the loss.
|
|
info["loss"] = loss.detach().cpu().item()
|
|
|
|
return loss, info
|
|
|
|
|
|
def compute_validation_loss(
|
|
params: AttributeDict,
|
|
tokenizer: whisper.tokenizer.Tokenizer,
|
|
model: Union[nn.Module, DDP],
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
world_size: int = 1,
|
|
) -> MetricsTracker:
|
|
"""Run the validation process."""
|
|
model.eval()
|
|
|
|
tot_loss = MetricsTracker()
|
|
|
|
for batch_idx, batch in enumerate(valid_dl):
|
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
|
loss, loss_info = compute_loss(
|
|
params=params,
|
|
tokenizer=tokenizer,
|
|
model=model,
|
|
batch=batch,
|
|
is_training=False,
|
|
)
|
|
assert loss.requires_grad is False
|
|
tot_loss = tot_loss + loss_info
|
|
|
|
if world_size > 1:
|
|
tot_loss.reduce(loss.device)
|
|
|
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
|
if loss_value < params.best_valid_loss:
|
|
params.best_valid_epoch = params.cur_epoch
|
|
params.best_valid_loss = loss_value
|
|
|
|
return tot_loss
|
|
|
|
|
|
def train_one_epoch(
|
|
params: AttributeDict,
|
|
tokenizer: whisper.tokenizer.Tokenizer,
|
|
model: Union[nn.Module, DDP],
|
|
optimizer: torch.optim.Optimizer,
|
|
scheduler: LRSchedulerType,
|
|
train_dl: torch.utils.data.DataLoader,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
scaler: GradScaler,
|
|
model_avg: Optional[nn.Module] = None,
|
|
tb_writer: Optional[SummaryWriter] = None,
|
|
world_size: int = 1,
|
|
rank: int = 0,
|
|
) -> None:
|
|
"""Train the model for one epoch.
|
|
|
|
The training loss from the mean of all frames is saved in
|
|
`params.train_loss`. It runs the validation process every
|
|
`params.valid_interval` batches.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The model for training.
|
|
optimizer:
|
|
The optimizer we are using.
|
|
scheduler:
|
|
The learning rate scheduler, we call step() every step.
|
|
train_dl:
|
|
Dataloader for the training dataset.
|
|
valid_dl:
|
|
Dataloader for the validation dataset.
|
|
scaler:
|
|
The scaler used for mix precision training.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
tb_writer:
|
|
Writer to write log messages to tensorboard.
|
|
world_size:
|
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
|
rank:
|
|
The rank of the node in DDP training. If no DDP is used, it should
|
|
be set to 0.
|
|
"""
|
|
model.train()
|
|
|
|
tot_loss = MetricsTracker()
|
|
|
|
for batch_idx, batch in enumerate(train_dl):
|
|
params.batch_idx_train += 1
|
|
batch_size = len(batch["supervisions"]["text"])
|
|
if batch_idx % params.valid_interval == 0 and not params.print_diagnostics:
|
|
logging.info("Computing validation loss")
|
|
valid_info = compute_validation_loss(
|
|
params=params,
|
|
tokenizer=tokenizer,
|
|
model=model,
|
|
valid_dl=valid_dl,
|
|
world_size=world_size,
|
|
)
|
|
model.train()
|
|
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
|
logging.info(
|
|
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
|
)
|
|
if tb_writer is not None:
|
|
valid_info.write_summary(
|
|
tb_writer, "train/valid_", params.batch_idx_train
|
|
)
|
|
|
|
try:
|
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
|
loss, loss_info = compute_loss(
|
|
params=params,
|
|
tokenizer=tokenizer,
|
|
model=model,
|
|
batch=batch,
|
|
is_training=True,
|
|
)
|
|
# summary stats
|
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
|
|
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
|
# in the batch and there is no normalization to it so far.
|
|
if params.deepspeed:
|
|
# deepspeed's backward() is different from torch's backward()
|
|
# in that it does not accept a loss tensor as input.
|
|
# It computes the loss internally.
|
|
model.backward(loss)
|
|
model.step()
|
|
else:
|
|
scaler.scale(loss).backward()
|
|
set_batch_count(model, params.batch_idx_train)
|
|
scheduler.step_batch(params.batch_idx_train)
|
|
|
|
scaler.step(optimizer)
|
|
scaler.update()
|
|
optimizer.zero_grad()
|
|
except: # noqa
|
|
display_and_save_batch(batch, params=params)
|
|
raise
|
|
|
|
if params.print_diagnostics and batch_idx == 5:
|
|
return
|
|
|
|
if (
|
|
rank == 0
|
|
and params.batch_idx_train > 0
|
|
and params.batch_idx_train % params.average_period == 0
|
|
and not params.deepspeed
|
|
):
|
|
update_averaged_model(
|
|
params=params,
|
|
model_cur=model,
|
|
model_avg=model_avg,
|
|
)
|
|
|
|
if batch_idx % 100 == 0 and params.use_fp16 and not params.deepspeed:
|
|
# If the grad scale was less than 1, try increasing it. The _growth_interval
|
|
# of the grad scaler is configurable, but we can't configure it to have different
|
|
# behavior depending on the current grad scale.
|
|
cur_grad_scale = scaler._scale.item()
|
|
if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0):
|
|
scaler.update(cur_grad_scale * 2.0)
|
|
if cur_grad_scale < 0.01:
|
|
logging.warning(f"Grad scale is small: {cur_grad_scale}")
|
|
if cur_grad_scale < 1.0e-05:
|
|
raise RuntimeError(
|
|
f"grad_scale is too small, exiting: {cur_grad_scale}"
|
|
)
|
|
if batch_idx % params.log_interval == 0:
|
|
try:
|
|
cur_lr = scheduler.get_last_lr()[0]
|
|
except: # noqa
|
|
cur_lr = 0.0
|
|
cur_grad_scale = (
|
|
scaler._scale.item()
|
|
if (params.use_fp16 and not params.deepspeed)
|
|
else 1.0
|
|
)
|
|
|
|
logging.info(
|
|
f"Epoch {params.cur_epoch}, "
|
|
f"batch {batch_idx}, loss[{loss_info}], "
|
|
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
|
f"lr: {cur_lr:.2e}, "
|
|
+ (
|
|
f"grad_scale: {scaler._scale.item()}"
|
|
if (params.use_fp16 and not params.deepspeed)
|
|
else ""
|
|
)
|
|
)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar(
|
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
|
)
|
|
|
|
loss_info.write_summary(
|
|
tb_writer, "train/current_", params.batch_idx_train
|
|
)
|
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
|
if params.use_fp16:
|
|
tb_writer.add_scalar(
|
|
"train/grad_scale",
|
|
cur_grad_scale,
|
|
params.batch_idx_train,
|
|
)
|
|
|
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
|
params.train_loss = loss_value
|
|
if params.train_loss < params.best_train_loss:
|
|
params.best_train_epoch = params.cur_epoch
|
|
params.best_train_loss = params.train_loss
|
|
|
|
|
|
def run(rank, world_size, args):
|
|
"""
|
|
Args:
|
|
rank:
|
|
It is a value between 0 and `world_size-1`, which is
|
|
passed automatically by `mp.spawn()` in :func:`main`.
|
|
The node with rank 0 is responsible for saving checkpoint.
|
|
world_size:
|
|
Number of GPUs for DDP training.
|
|
args:
|
|
The return value of get_parser().parse_args()
|
|
"""
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
fix_random_seed(params.seed)
|
|
|
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
|
|
replace_whisper_encoder_forward()
|
|
model = whisper.load_model(params.model_name, "cpu")
|
|
del model.alignment_heads
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
tokenizer = whisper.tokenizer.get_tokenizer(
|
|
model.is_multilingual,
|
|
num_languages=model.num_languages,
|
|
language="zh",
|
|
task="transcribe",
|
|
)
|
|
|
|
model_avg: Optional[nn.Module] = None
|
|
if rank == 0:
|
|
# model_avg is only used with rank 0
|
|
model_avg = copy.deepcopy(model).to(torch.float64)
|
|
|
|
assert params.start_epoch > 0, params.start_epoch
|
|
checkpoints = load_checkpoint_if_available(
|
|
params=params, model=model, model_avg=model_avg
|
|
)
|
|
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", rank)
|
|
else:
|
|
device = torch.device("cpu")
|
|
logging.info(f"Device: {device}")
|
|
model.to(device)
|
|
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=params.base_lr)
|
|
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
|
|
|
|
if checkpoints and "optimizer" in checkpoints:
|
|
logging.info("Loading optimizer state dict")
|
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
|
|
|
if (
|
|
checkpoints
|
|
and "scheduler" in checkpoints
|
|
and checkpoints["scheduler"] is not None
|
|
):
|
|
logging.info("Loading scheduler state dict")
|
|
scheduler.load_state_dict(checkpoints["scheduler"])
|
|
|
|
if world_size > 1:
|
|
if params.deepspeed:
|
|
logging.info("Using DeepSpeed")
|
|
model, optimizer, _, scheduler = deepspeed.initialize(
|
|
args=params, model=model, model_parameters=model.parameters()
|
|
)
|
|
else:
|
|
logging.info("Using DDP")
|
|
setup_dist(use_ddp_launch=True)
|
|
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
|
|
|
if params.print_diagnostics:
|
|
opts = diagnostics.TensorDiagnosticOptions(
|
|
2**22
|
|
) # allow 4 megabytes per sub-module
|
|
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
|
|
|
if params.inf_check:
|
|
register_inf_check_hooks(model)
|
|
|
|
aishell = AishellAsrDataModule(args)
|
|
|
|
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
|
# We only load the sampler's state dict when it loads a checkpoint
|
|
# saved in the middle of an epoch
|
|
sampler_state_dict = checkpoints["sampler"]
|
|
else:
|
|
sampler_state_dict = None
|
|
|
|
train_dl = aishell.train_dataloaders(aishell.train_cuts())
|
|
valid_dl = aishell.valid_dataloaders(aishell.valid_cuts())
|
|
|
|
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
|
|
if checkpoints and "grad_scaler" in checkpoints:
|
|
logging.info("Loading grad scaler state dict")
|
|
scaler.load_state_dict(checkpoints["grad_scaler"])
|
|
|
|
if args.tensorboard and rank == 0:
|
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
|
else:
|
|
tb_writer = None
|
|
|
|
logging.info(f"start training from epoch {params.start_epoch}")
|
|
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
|
if not params.deepspeed:
|
|
scheduler.step_epoch(epoch - 1)
|
|
fix_random_seed(params.seed + epoch - 1)
|
|
train_dl.sampler.set_epoch(epoch - 1)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
|
|
|
params.cur_epoch = epoch
|
|
|
|
train_one_epoch(
|
|
params=params,
|
|
tokenizer=tokenizer,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
train_dl=train_dl,
|
|
valid_dl=valid_dl,
|
|
scaler=scaler,
|
|
tb_writer=tb_writer,
|
|
world_size=world_size,
|
|
rank=rank,
|
|
)
|
|
|
|
if params.print_diagnostics:
|
|
diagnostic.print_diagnostics()
|
|
break
|
|
|
|
if params.deepspeed:
|
|
model.save_checkpoint(
|
|
save_dir=params.exp_dir,
|
|
tag=f"epoch-{params.cur_epoch}",
|
|
client_state={},
|
|
)
|
|
if rank == 0:
|
|
convert_zero_checkpoint_to_fp32_state_dict(
|
|
params.exp_dir,
|
|
f"{params.exp_dir}/epoch-{params.cur_epoch}.pt",
|
|
tag=f"epoch-{params.cur_epoch}",
|
|
)
|
|
else:
|
|
save_checkpoint(
|
|
params=params,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
|
|
logging.info("Done!")
|
|
|
|
if world_size > 1 and not params.deepspeed:
|
|
torch.distributed.barrier()
|
|
cleanup_dist()
|
|
|
|
|
|
def display_and_save_batch(
|
|
batch: dict,
|
|
params: AttributeDict,
|
|
) -> None:
|
|
"""Display the batch statistics and save the batch into disk.
|
|
|
|
Args:
|
|
batch:
|
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
|
for the content in it.
|
|
params:
|
|
Parameters for training. See :func:`get_params`.
|
|
"""
|
|
from lhotse.utils import uuid4
|
|
|
|
filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
|
|
logging.info(f"Saving batch to {filename}")
|
|
torch.save(batch, filename)
|
|
|
|
supervisions = batch["supervisions"]
|
|
features = batch["inputs"]
|
|
|
|
logging.info(f"features shape: {features.shape}")
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
AishellAsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
world_size = get_world_size()
|
|
rank = get_rank()
|
|
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
run(rank=rank, world_size=world_size, args=args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|