mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
* support long file transcription * rename recipe as long_file_recog * add docs * support multi-gpu decoding * style fix
190 lines
6.4 KiB
Python
190 lines
6.4 KiB
Python
# Copyright 2021 Piotr Żelasko
|
|
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
|
# Copyright 2023 Xiaomi Corporation (Author: Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
from functools import lru_cache
|
|
from pathlib import Path
|
|
from typing import Dict, List, Union
|
|
|
|
import torch
|
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest_lazy
|
|
from lhotse.cut import Cut
|
|
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|
CutConcatenate,
|
|
CutMix,
|
|
DynamicBucketingSampler,
|
|
K2SpeechRecognitionDataset,
|
|
PrecomputedFeatures,
|
|
SimpleCutSampler,
|
|
SpecAugment,
|
|
)
|
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
|
AudioSamples,
|
|
BatchIO,
|
|
OnTheFlyFeatures,
|
|
)
|
|
from torch.utils.data import DataLoader
|
|
|
|
from icefall.utils import str2bool
|
|
|
|
|
|
class SpeechRecognitionDataset(K2SpeechRecognitionDataset):
|
|
def __init__(
|
|
self,
|
|
return_cuts: bool = False,
|
|
input_strategy: BatchIO = PrecomputedFeatures(),
|
|
):
|
|
super().__init__(return_cuts=return_cuts, input_strategy=input_strategy)
|
|
|
|
def __getitem__(self, cuts: CutSet) -> Dict[str, Union[torch.Tensor, List[Cut]]]:
|
|
"""
|
|
Return a new batch, with the batch size automatically determined using the constraints
|
|
of max_frames and max_cuts.
|
|
"""
|
|
self.hdf5_fix.update()
|
|
|
|
# Note: don't sort cuts here
|
|
# Sort the cuts by duration so that the first one determines the batch time dimensions.
|
|
# cuts = cuts.sort_by_duration(ascending=False)
|
|
|
|
# Get a tensor with batched feature matrices, shape (B, T, F)
|
|
# Collation performs auto-padding, if necessary.
|
|
input_tpl = self.input_strategy(cuts)
|
|
if len(input_tpl) == 3:
|
|
# An input strategy with fault tolerant audio reading mode.
|
|
# "cuts" may be a subset of the original "cuts" variable,
|
|
# that only has cuts for which we succesfully read the audio.
|
|
inputs, _, cuts = input_tpl
|
|
else:
|
|
inputs, _ = input_tpl
|
|
|
|
# Get a dict of tensors that encode the positional information about supervisions
|
|
# in the batch of feature matrices. The tensors are named "sequence_idx",
|
|
# "start_frame/sample" and "num_frames/samples".
|
|
supervision_intervals = self.input_strategy.supervision_intervals(cuts)
|
|
|
|
batch = {"inputs": inputs, "supervisions": supervision_intervals}
|
|
if self.return_cuts:
|
|
batch["supervisions"]["cut"] = [cut for cut in cuts]
|
|
|
|
return batch
|
|
|
|
|
|
class AsrDataModule:
|
|
"""
|
|
DataModule for k2 ASR experiments.
|
|
It assumes there is always one train and valid dataloader,
|
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
|
and test-other).
|
|
|
|
It contains all the common data pipeline modules used in ASR
|
|
experiments, e.g.:
|
|
- dynamic batch size,
|
|
- bucketing samplers,
|
|
- cut concatenation,
|
|
- augmentation,
|
|
- on-the-fly feature extraction
|
|
|
|
This class should be derived for specific corpora used in ASR tasks.
|
|
"""
|
|
|
|
def __init__(self, args: argparse.Namespace):
|
|
self.args = args
|
|
|
|
@classmethod
|
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group(
|
|
title="ASR data related options",
|
|
description="These options are used for the preparation of "
|
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
|
"effective batch sizes, sampling strategies, applied data "
|
|
"augmentations, etc.",
|
|
)
|
|
group.add_argument(
|
|
"--manifest-dir",
|
|
type=Path,
|
|
default=Path("data/manifests_chunk"),
|
|
help="Path to directory with train/valid/test cuts.",
|
|
)
|
|
group.add_argument(
|
|
"--max-duration",
|
|
type=int,
|
|
default=600.0,
|
|
help="Maximum pooled recordings duration (seconds) in a "
|
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
|
)
|
|
group.add_argument(
|
|
"--bucketing-sampler",
|
|
type=str2bool,
|
|
default=True,
|
|
help="When enabled, the batches will come from buckets of "
|
|
"similar duration (saves padding frames).",
|
|
)
|
|
group.add_argument(
|
|
"--return-cuts",
|
|
type=str2bool,
|
|
default=True,
|
|
help="When enabled, each batch will have the "
|
|
"field: batch['supervisions']['cut'] with the cuts that "
|
|
"were used to construct it.",
|
|
)
|
|
group.add_argument(
|
|
"--num-workers",
|
|
type=int,
|
|
default=8,
|
|
help="The number of training dataloader workers that "
|
|
"collect the batches.",
|
|
)
|
|
|
|
group.add_argument(
|
|
"--input-strategy",
|
|
type=str,
|
|
default="PrecomputedFeatures",
|
|
help="AudioSamples or PrecomputedFeatures",
|
|
)
|
|
|
|
def dataloaders(self, cuts: CutSet) -> DataLoader:
|
|
logging.debug("About to create test dataset")
|
|
test = SpeechRecognitionDataset(
|
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
|
return_cuts=self.args.return_cuts,
|
|
)
|
|
|
|
sampler = SimpleCutSampler(
|
|
cuts,
|
|
max_duration=self.args.max_duration,
|
|
shuffle=False,
|
|
drop_last=False,
|
|
)
|
|
|
|
logging.debug("About to create test dataloader")
|
|
test_dl = DataLoader(
|
|
test,
|
|
batch_size=None,
|
|
sampler=sampler,
|
|
num_workers=self.args.num_workers,
|
|
persistent_workers=False,
|
|
)
|
|
return test_dl
|
|
|
|
@lru_cache()
|
|
def load_subset(self, cuts_filename: Path) -> CutSet:
|
|
return load_manifest_lazy(cuts_filename)
|