mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-10 10:32:17 +00:00
* Add emformer model. * Copy files. * Use Emformer model as RNN-T encoder. * Support streaming decoding. * Minor fixes. * Add RNN-T Emformer for Aishell.
363 lines
10 KiB
Python
Executable File
363 lines
10 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import logging
|
|
import time
|
|
from pathlib import Path
|
|
from typing import List, Optional
|
|
|
|
import kaldifeat
|
|
import numpy as np
|
|
import sentencepiece as spm
|
|
import torch
|
|
import torch.nn as nn
|
|
from asr_datamodule import LibriSpeechAsrDataModule
|
|
from train import add_model_arguments, get_params, get_transducer_model
|
|
|
|
from icefall.checkpoint import (
|
|
average_checkpoints,
|
|
find_checkpoints,
|
|
load_checkpoint,
|
|
)
|
|
from icefall.utils import AttributeDict, setup_logger
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=28,
|
|
help="It specifies the checkpoint to use for decoding."
|
|
"Note: Epoch counts from 0.",
|
|
)
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=15,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch'. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg-last-n",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --epoch and --avg are ignored and it
|
|
will use the last n checkpoints exp_dir/checkpoint-xxx.pt
|
|
where xxx is the number of processed batches while
|
|
saving that checkpoint.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="transducer_emformer/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
default="data/lang_bpe_500/bpe.model",
|
|
help="Path to the BPE model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--decoding-method",
|
|
type=str,
|
|
default="greedy_search",
|
|
help="""Possible values are:
|
|
- greedy_search
|
|
- beam_search
|
|
- modified_beam_search
|
|
- fast_beam_search
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--beam-size",
|
|
type=int,
|
|
default=4,
|
|
help="""An interger indicating how many candidates we will keep for each
|
|
frame. Used only when --decoding-method is beam_search or
|
|
modified_beam_search.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--beam",
|
|
type=float,
|
|
default=4,
|
|
help="""A floating point value to calculate the cutoff score during beam
|
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
|
`beam` in Kaldi.
|
|
Used only when --decoding-method is fast_beam_search""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--max-contexts",
|
|
type=int,
|
|
default=4,
|
|
help="""Used only when --decoding-method is
|
|
fast_beam_search""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--max-states",
|
|
type=int,
|
|
default=8,
|
|
help="""Used only when --decoding-method is
|
|
fast_beam_search""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--context-size",
|
|
type=int,
|
|
default=2,
|
|
help="The context size in the decoder. 1 means bigram; "
|
|
"2 means tri-gram",
|
|
)
|
|
parser.add_argument(
|
|
"--max-sym-per-frame",
|
|
type=int,
|
|
default=1,
|
|
help="""Maximum number of symbols per frame.
|
|
Used only when --decoding_method is greedy_search""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--sample-rate",
|
|
type=int,
|
|
default=16000,
|
|
help="The sample rate of the input sound file",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def get_feature_extractor(
|
|
params: AttributeDict,
|
|
) -> kaldifeat.Fbank:
|
|
logging.info("Constructing Fbank computer")
|
|
opts = kaldifeat.FbankOptions()
|
|
opts.device = params.device
|
|
opts.frame_opts.dither = 0
|
|
opts.frame_opts.snip_edges = True
|
|
opts.frame_opts.samp_freq = params.sample_rate
|
|
opts.mel_opts.num_bins = params.feature_dim
|
|
|
|
return kaldifeat.Fbank(opts)
|
|
|
|
|
|
def decode_one_utterance(
|
|
audio_samples: torch.Tensor,
|
|
model: nn.Module,
|
|
fbank: kaldifeat.Fbank,
|
|
params: AttributeDict,
|
|
sp: spm.SentencePieceProcessor,
|
|
):
|
|
"""Decode one utterance.
|
|
Args:
|
|
audio_samples:
|
|
A 1-D float32 tensor of shape (num_samples,) containing the normalized
|
|
audio samples. Normalized means the samples is in the range [-1, 1].
|
|
model:
|
|
The RNN-T model.
|
|
feature_extractor:
|
|
The feature extractor.
|
|
params:
|
|
It is the return value of :func:`get_params`.
|
|
sp:
|
|
The BPE model.
|
|
"""
|
|
sample_rate = params.sample_rate
|
|
frame_shift = sample_rate * fbank.opts.frame_opts.frame_shift_ms / 1000
|
|
|
|
frame_shift = int(frame_shift) # number of samples
|
|
|
|
# Note: We add 3 here because the subsampling method ((n-1)//2-1))//2
|
|
# is not equal to n//4. We will switch to a subsampling method that
|
|
# satisfies n//4, where n is the number of input frames.
|
|
segment_length = (params.segment_length + 3) * frame_shift
|
|
|
|
right_context_length = params.right_context_length * frame_shift
|
|
chunk_size = segment_length + right_context_length
|
|
|
|
opts = fbank.opts.frame_opts
|
|
chunk_size += (
|
|
(opts.frame_length_ms - opts.frame_shift_ms) / 1000 * sample_rate
|
|
)
|
|
|
|
chunk_size = int(chunk_size)
|
|
|
|
states: Optional[List[List[torch.Tensor]]] = None
|
|
|
|
blank_id = model.decoder.blank_id
|
|
context_size = model.decoder.context_size
|
|
|
|
device = model.device
|
|
|
|
hyp = [blank_id] * context_size
|
|
|
|
decoder_input = torch.tensor(hyp, device=device, dtype=torch.int64).reshape(
|
|
1, context_size
|
|
)
|
|
|
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
|
|
i = 0
|
|
num_samples = audio_samples.size(0)
|
|
while i < num_samples:
|
|
# Note: The current approach of computing the features is not ideal
|
|
# since it re-computes the features for the right context.
|
|
chunk = audio_samples[i : i + chunk_size] # noqa
|
|
i += segment_length
|
|
if chunk.size(0) < chunk_size:
|
|
chunk = torch.nn.functional.pad(
|
|
chunk, pad=(0, chunk_size - chunk.size(0))
|
|
)
|
|
features = fbank(chunk)
|
|
feature_lens = torch.tensor([features.size(0)], device=params.device)
|
|
|
|
features = features.unsqueeze(0) # (1, T, C)
|
|
|
|
encoder_out, encoder_out_lens, states = model.encoder.streaming_forward(
|
|
features,
|
|
feature_lens,
|
|
states,
|
|
)
|
|
for t in range(encoder_out_lens.item()):
|
|
# fmt: off
|
|
current_encoder_out = encoder_out[0:1, t:t+1, :].unsqueeze(2)
|
|
# fmt: on
|
|
logits = model.joiner(current_encoder_out, decoder_out.unsqueeze(1))
|
|
# logits is (1, 1, 1, vocab_size)
|
|
y = logits.argmax().item()
|
|
if y == blank_id:
|
|
continue
|
|
|
|
hyp.append(y)
|
|
|
|
decoder_input = torch.tensor(
|
|
[hyp[-context_size:]], device=device, dtype=torch.int64
|
|
).reshape(1, context_size)
|
|
|
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
logging.info(f"Partial result:\n{sp.decode(hyp[context_size:])}")
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
# Note: params.decoding_method is currently not used.
|
|
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
|
|
|
setup_logger(f"{params.res_dir}/log-streaming-decode")
|
|
logging.info("Decoding started")
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"Device: {device}")
|
|
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(params.bpe_model)
|
|
|
|
# <blk> is defined in local/train_bpe_model.py
|
|
params.blank_id = sp.piece_to_id("<blk>")
|
|
params.vocab_size = sp.get_piece_size()
|
|
|
|
params.device = device
|
|
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_transducer_model(params)
|
|
|
|
if params.avg_last_n > 0:
|
|
filenames = find_checkpoints(params.exp_dir)[: params.avg_last_n]
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
elif params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if start >= 0:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
|
|
model.to(device)
|
|
model.eval()
|
|
model.device = device
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
librispeech = LibriSpeechAsrDataModule(args)
|
|
|
|
test_clean_cuts = librispeech.test_clean_cuts()
|
|
|
|
fbank = get_feature_extractor(params)
|
|
|
|
for num, cut in enumerate(test_clean_cuts):
|
|
logging.info("Processing {num}")
|
|
|
|
audio: np.ndarray = cut.load_audio()
|
|
# audio.shape: (1, num_samples)
|
|
assert len(audio.shape) == 2
|
|
assert audio.shape[0] == 1, "Should be single channel"
|
|
assert audio.dtype == np.float32, audio.dtype
|
|
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
|
decode_one_utterance(
|
|
audio_samples=torch.from_numpy(audio).squeeze(0).to(device),
|
|
model=model,
|
|
fbank=fbank,
|
|
params=params,
|
|
sp=sp,
|
|
)
|
|
|
|
logging.info(f"The ground truth is:\n{cut.supervisions[0].text}")
|
|
if num >= 0:
|
|
break
|
|
time.sleep(2) # So that you can see the decoded results
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|