mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
199 lines
6.1 KiB
Bash
Executable File
199 lines
6.1 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
|
|
|
set -eou pipefail
|
|
|
|
stage=-1
|
|
stop_stage=100
|
|
|
|
# We assume dl_dir (download dir) contains the following
|
|
# directories and files. If not, they will be downloaded
|
|
# by this script automatically.
|
|
#
|
|
# - $dl_dir/TALCS_corpus
|
|
# You can find three directories:train_set, dev_set, and test_set.
|
|
# You can get it from https://ai.100tal.com/dataset
|
|
# - dev_set
|
|
# - test_set
|
|
# - train_set
|
|
#
|
|
# - $dl_dir/musan
|
|
# This directory contains the following directories downloaded from
|
|
# http://www.openslr.org/17/
|
|
#
|
|
# - music
|
|
# - noise
|
|
# - speech
|
|
|
|
dl_dir=$PWD/download
|
|
|
|
. shared/parse_options.sh || exit 1
|
|
|
|
# vocab size for sentence piece models.
|
|
# It will generate data/lang_bbpe_xxx,
|
|
# data/lang_bbpe_yyy if the array contains xxx, yyy
|
|
vocab_sizes=(
|
|
# 2000
|
|
1000
|
|
500
|
|
)
|
|
|
|
# All files generated by this script are saved in "data".
|
|
# You can safely remove "data" and rerun this script to regenerate it.
|
|
mkdir -p data
|
|
|
|
log() {
|
|
# This function is from espnet
|
|
local fname=${BASH_SOURCE[1]##*/}
|
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
}
|
|
|
|
log "dl_dir: $dl_dir"
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
log "Stage 0: Download data"
|
|
# Before you run this script, you must get the TAL_CSASR dataset
|
|
# from https://ai.100tal.com/dataset
|
|
if [ ! -d $dl_dir/tal_csasr/TALCS_corpus ]; then
|
|
mv $dl_dir/TALCS_corpus $dl_dir/tal_csasr
|
|
fi
|
|
|
|
# If you have pre-downloaded it to /path/to/TALCS_corpus,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/TALCS_corpus $dl_dir/tal_csasr
|
|
|
|
# If you have pre-downloaded it to /path/to/musan,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/musan $dl_dir/musan
|
|
#
|
|
if [ ! -d $dl_dir/musan ]; then
|
|
lhotse download musan $dl_dir
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
log "Stage 1: Prepare tal_csasr manifest"
|
|
# We assume that you have downloaded the TALCS_corpus
|
|
# to $dl_dir/tal_csasr
|
|
if [ ! -f data/manifests/tal_csasr/.manifests.done ]; then
|
|
mkdir -p data/manifests/tal_csasr
|
|
lhotse prepare tal-csasr $dl_dir/tal_csasr data/manifests/tal_csasr
|
|
touch data/manifests/tal_csasr/.manifests.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 2: Prepare musan manifest"
|
|
# We assume that you have downloaded the musan corpus
|
|
# to data/musan
|
|
if [ ! -f data/manifests/.musan_manifests.done ]; then
|
|
log "It may take 6 minutes"
|
|
mkdir -p data/manifests
|
|
lhotse prepare musan $dl_dir/musan data/manifests
|
|
touch data/manifests/.musan_manifests.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
log "Stage 3: Compute fbank for musan"
|
|
if [ ! -f data/fbank/.msuan.done ]; then
|
|
mkdir -p data/fbank
|
|
./local/compute_fbank_musan.py
|
|
touch data/fbank/.msuan.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
log "Stage 4: Compute fbank for tal_csasr"
|
|
if [ ! -f data/fbank/.tal_csasr.done ]; then
|
|
mkdir -p data/fbank
|
|
./local/compute_fbank_tal_csasr.py
|
|
touch data/fbank/.tal_csasr.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
log "Stage 5: Prepare char based lang"
|
|
lang_char_dir=data/lang_char
|
|
mkdir -p $lang_char_dir
|
|
|
|
# Download BPE models trained with LibriSpeech
|
|
# Here we use the BPE model with 5000 units trained with Librispeech.
|
|
# You can also use other BPE models if available.
|
|
if [ ! -f $lang_char_dir/bpe.model ]; then
|
|
wget -O $lang_char_dir/bpe.model \
|
|
https://huggingface.co/luomingshuang/bpe_models_trained_with_Librispeech/resolve/main/lang_bpe_500/bpe.model
|
|
fi
|
|
|
|
# we extract text from manifests rather than the label.txt in corpus, because
|
|
# the texts in manifests have been normalized in lhotse.
|
|
if [ ! -f $lang_char_dir/text ]; then
|
|
gunzip -c data/manifests/tal_csasr/tal_csasr_supervisions_train_set.jsonl.gz \
|
|
| grep -o 'text":\s[^,]*' | sed 's/text": "//g;s/"//g' \
|
|
| ./local/text2token.py -t "char" > $lang_char_dir/text_train
|
|
|
|
gunzip -c data/manifests/tal_csasr/tal_csasr_supervisions_dev_set.jsonl.gz \
|
|
| grep -o 'text":\s[^,]*' | sed 's/text": "//g;s/"//g' \
|
|
| ./local/text2token.py -t "char" > $lang_char_dir/text_dev
|
|
|
|
gunzip -c data/manifests/tal_csasr/tal_csasr_supervisions_test_set.jsonl.gz \
|
|
| grep -o 'text":\s[^,]*' | sed 's/text": "//g;s/"//g' \
|
|
| ./local/text2token.py -t "char" > $lang_char_dir/text_test
|
|
|
|
for r in text_train text_dev text_test ; do
|
|
cat $lang_char_dir/$r >> $lang_char_dir/text
|
|
done
|
|
fi
|
|
|
|
# Prepare words.txt
|
|
# We assume you have installed jieba, if not, please install
|
|
# it using: pip install jieba
|
|
if [ ! -f $lang_char_dir/words.txt ]; then
|
|
python -m jieba $lang_char_dir/text | sed 's/\///g;s/\s\+/ /g' > $lang_char_dir/text.seg
|
|
|
|
(echo '<eps> 0'; echo '!SIL 1'; echo '<SPOKEN_NOISE> 2'; echo '<UNK> 3';) \
|
|
> $lang_char_dir/words.txt
|
|
|
|
cat $lang_char_dir/text.seg | sed 's/ /\n/g' | sort -u | sed '/^$/d' \
|
|
| awk '{print $1" "NR+3}' >> $lang_char_dir/words.txt
|
|
|
|
num_lines=$(< $lang_char_dir/words.txt wc -l)
|
|
(echo "#0 $num_lines"; echo "<s> $(($num_lines + 1))"; echo "</s> $(($num_lines + 2))";) \
|
|
>> $lang_char_dir/words.txt
|
|
fi
|
|
|
|
# Tokenize text with BPE model
|
|
python ./local/tokenize_with_bpe_model.py \
|
|
--input $lang_char_dir/text \
|
|
--output $lang_char_dir/text_with_bpe \
|
|
--bpe-model $lang_char_dir/bpe.model
|
|
|
|
if [ ! -f $lang_char_dir/L_disambig.pt ]; then
|
|
python local/prepare_char.py
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|
log "Stage 7: Prepare Byte BPE based lang"
|
|
|
|
for vocab_size in ${vocab_sizes[@]}; do
|
|
lang_dir=data/lang_bbpe_${vocab_size}
|
|
mkdir -p $lang_dir
|
|
# We reuse words.txt from phone based lexicon
|
|
# so that the two can share G.pt later.
|
|
cp $lang_char_dir/words.txt $lang_dir
|
|
cp $lang_char_dir/text $lang_dir
|
|
|
|
if [ ! -f $lang_dir/bbpe.model ]; then
|
|
./local/train_bbpe_model.py \
|
|
--lang-dir $lang_dir \
|
|
--vocab-size $vocab_size \
|
|
--transcript $lang_dir/text
|
|
fi
|
|
done
|
|
fi
|