icefall/egs/tal_csasr/ASR/prepare.sh
2023-10-25 00:03:33 +08:00

199 lines
6.1 KiB
Bash
Executable File

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/TALCS_corpus
# You can find three directories:train_set, dev_set, and test_set.
# You can get it from https://ai.100tal.com/dataset
# - dev_set
# - test_set
# - train_set
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bbpe_xxx,
# data/lang_bbpe_yyy if the array contains xxx, yyy
vocab_sizes=(
# 2000
1000
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# Before you run this script, you must get the TAL_CSASR dataset
# from https://ai.100tal.com/dataset
if [ ! -d $dl_dir/tal_csasr/TALCS_corpus ]; then
mv $dl_dir/TALCS_corpus $dl_dir/tal_csasr
fi
# If you have pre-downloaded it to /path/to/TALCS_corpus,
# you can create a symlink
#
# ln -sfv /path/to/TALCS_corpus $dl_dir/tal_csasr
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/musan
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare tal_csasr manifest"
# We assume that you have downloaded the TALCS_corpus
# to $dl_dir/tal_csasr
if [ ! -f data/manifests/tal_csasr/.manifests.done ]; then
mkdir -p data/manifests/tal_csasr
lhotse prepare tal-csasr $dl_dir/tal_csasr data/manifests/tal_csasr
touch data/manifests/tal_csasr/.manifests.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
if [ ! -f data/manifests/.musan_manifests.done ]; then
log "It may take 6 minutes"
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan_manifests.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for musan"
if [ ! -f data/fbank/.msuan.done ]; then
mkdir -p data/fbank
./local/compute_fbank_musan.py
touch data/fbank/.msuan.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for tal_csasr"
if [ ! -f data/fbank/.tal_csasr.done ]; then
mkdir -p data/fbank
./local/compute_fbank_tal_csasr.py
touch data/fbank/.tal_csasr.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare char based lang"
lang_char_dir=data/lang_char
mkdir -p $lang_char_dir
# Download BPE models trained with LibriSpeech
# Here we use the BPE model with 5000 units trained with Librispeech.
# You can also use other BPE models if available.
if [ ! -f $lang_char_dir/bpe.model ]; then
wget -O $lang_char_dir/bpe.model \
https://huggingface.co/luomingshuang/bpe_models_trained_with_Librispeech/resolve/main/lang_bpe_500/bpe.model
fi
# we extract text from manifests rather than the label.txt in corpus, because
# the texts in manifests have been normalized in lhotse.
if [ ! -f $lang_char_dir/text ]; then
gunzip -c data/manifests/tal_csasr/tal_csasr_supervisions_train_set.jsonl.gz \
| grep -o 'text":\s[^,]*' | sed 's/text": "//g;s/"//g' \
| ./local/text2token.py -t "char" > $lang_char_dir/text_train
gunzip -c data/manifests/tal_csasr/tal_csasr_supervisions_dev_set.jsonl.gz \
| grep -o 'text":\s[^,]*' | sed 's/text": "//g;s/"//g' \
| ./local/text2token.py -t "char" > $lang_char_dir/text_dev
gunzip -c data/manifests/tal_csasr/tal_csasr_supervisions_test_set.jsonl.gz \
| grep -o 'text":\s[^,]*' | sed 's/text": "//g;s/"//g' \
| ./local/text2token.py -t "char" > $lang_char_dir/text_test
for r in text_train text_dev text_test ; do
cat $lang_char_dir/$r >> $lang_char_dir/text
done
fi
# Prepare words.txt
# We assume you have installed jieba, if not, please install
# it using: pip install jieba
if [ ! -f $lang_char_dir/words.txt ]; then
python -m jieba $lang_char_dir/text | sed 's/\///g;s/\s\+/ /g' > $lang_char_dir/text.seg
(echo '<eps> 0'; echo '!SIL 1'; echo '<SPOKEN_NOISE> 2'; echo '<UNK> 3';) \
> $lang_char_dir/words.txt
cat $lang_char_dir/text.seg | sed 's/ /\n/g' | sort -u | sed '/^$/d' \
| awk '{print $1" "NR+3}' >> $lang_char_dir/words.txt
num_lines=$(< $lang_char_dir/words.txt wc -l)
(echo "#0 $num_lines"; echo "<s> $(($num_lines + 1))"; echo "</s> $(($num_lines + 2))";) \
>> $lang_char_dir/words.txt
fi
# Tokenize text with BPE model
python ./local/tokenize_with_bpe_model.py \
--input $lang_char_dir/text \
--output $lang_char_dir/text_with_bpe \
--bpe-model $lang_char_dir/bpe.model
if [ ! -f $lang_char_dir/L_disambig.pt ]; then
python local/prepare_char.py
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 7: Prepare Byte BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bbpe_${vocab_size}
mkdir -p $lang_dir
# We reuse words.txt from phone based lexicon
# so that the two can share G.pt later.
cp $lang_char_dir/words.txt $lang_dir
cp $lang_char_dir/text $lang_dir
if [ ! -f $lang_dir/bbpe.model ]; then
./local/train_bbpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/text
fi
done
fi