2023-10-25 00:03:33 +08:00

234 lines
6.6 KiB
Bash
Executable File

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=15
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/LibriSpeech
# You can find BOOKS.TXT, test-clean, train-clean-360, etc, inside it.
# You can download them from https://www.openslr.org/12
#
# - $dl_dir/lm
# This directory contains the following files downloaded from
# http://www.openslr.org/resources/11
#
# - 3-gram.pruned.1e-7.arpa.gz
# - 3-gram.pruned.1e-7.arpa
# - 4-gram.arpa.gz
# - 4-gram.arpa
# - librispeech-vocab.txt
# - librispeech-lexicon.txt
# - librispeech-lm-norm.txt.gz
#
otc_token="<star>"
feature_type="ssl"
dl_dir=$PWD/download
manifests_dir="data/manifests"
feature_dir="data/${feature_type}"
lang_dir="data/lang"
lm_dir="data/lm"
perturb_speed=false
# ssl or fbank
. ./cmd.sh
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
200
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: ${dl_dir}"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: Download LM"
mkdir -p ${dl_dir}/lm
if [ ! -e ${dl_dir}/lm/.done ]; then
./local/download_lm.py --out-dir=${dl_dir}/lm
touch ${dl_dir}/lm/.done
fi
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/LibriSpeech,
# you can create a symlink
#
# ln -sfv /path/to/LibriSpeech $dl_dir/LibriSpeech
#
if [ ! -d $dl_dir/LibriSpeech/train-clean-100 ]; then
lhotse download librispeech --full ${dl_dir}
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare LibriSpeech manifest"
# We assume that you have downloaded the LibriSpeech corpus
# to $dl_dir/LibriSpeech
mkdir -p data/manifests
if [ ! -e data/manifests/.librispeech.done ]; then
lhotse prepare librispeech -j ${nj} \
-p dev-clean \
-p dev-other \
-p test-clean \
-p test-other \
-p train-clean-100 "${dl_dir}/LibriSpeech" "${manifests_dir}"
touch data/manifests/.librispeech.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Compute ${feature_type} feature for librispeech (train-clean-100)"
mkdir -p "${feature_dir}"
if [ ! -e "${feature_dir}/.librispeech.done" ]; then
if [ "${feature_type}" = ssl ]; then
./local/compute_ssl_librispeech.py
elif [ "${feature_type}" = fbank ]; then
./local/compute_fbank_librispeech.py --perturb-speed ${perturb_speed}
else
log "Error: not supported --feature-type '${feature_type}'"
exit 2
fi
touch "${feature_dir}.librispeech.done"
fi
if [ ! -e "${feature_dir}/.librispeech-validated.done" ]; then
log "Validating data/ssl for LibriSpeech"
parts=(
train-clean-100
test-clean
test-other
dev-clean
dev-other
)
for part in ${parts[@]}; do
python3 ./local/validate_manifest.py \
"${feature_dir}/librispeech_cuts_${part}.jsonl.gz"
done
touch "${feature_dir}/.librispeech-validated.done"
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare words.txt"
mkdir -p ${lang_dir}
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
cat - $dl_dir/lm/librispeech-lexicon.txt |
sort | uniq > ${lang_dir}/lexicon.txt
local/get_words_from_lexicon.py \
--lang-dir ${lang_dir} \
--otc-token ${otc_token}
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
bpe_lang_dir="data/lang_bpe_${vocab_size}"
mkdir -p "${bpe_lang_dir}"
# We reuse words.txt from phone based lexicon
# so that the two can share G.pt later.
cp "${lang_dir}/words.txt" "${bpe_lang_dir}"
if [ ! -f "${bpe_lang_dir}/transcript_words.txt" ]; then
log "Generate data for BPE training"
files=$(
find "$dl_dir/LibriSpeech/train-clean-100" -name "*.trans.txt"
find "$dl_dir/LibriSpeech/train-clean-360" -name "*.trans.txt"
find "$dl_dir/LibriSpeech/train-other-500" -name "*.trans.txt"
)
for f in ${files[@]}; do
cat $f | cut -d " " -f 2-
done > "${bpe_lang_dir}/transcript_words.txt"
fi
if [ ! -f ${bpe_lang_dir}/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir ${bpe_lang_dir} \
--vocab-size ${vocab_size} \
--transcript ${bpe_lang_dir}/transcript_words.txt
fi
if [ ! -f ${bpe_lang_dir}/L_disambig.pt ]; then
./local/prepare_otc_lang_bpe.py \
--lang-dir "${bpe_lang_dir}" \
--otc-token "${otc_token}"
log "Validating ${bpe_lang_dir}/lexicon.txt"
./local/validate_bpe_lexicon.py \
--lexicon ${bpe_lang_dir}/lexicon.txt \
--bpe-model ${bpe_lang_dir}/bpe.model \
--otc-token "${otc_token}"
fi
done
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare G"
# We assume you have installed kaldilm, if not, please install
# it using: pip install kaldilm
mkdir -p "${lm_dir}"
if [ ! -f ${lm_dir}/G_3_gram.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table="${lang_dir}/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
${dl_dir}/lm/3-gram.pruned.1e-7.arpa > ${lm_dir}/G_3_gram.fst.txt
fi
if [ ! -f ${lm_dir}/G_4_gram.fst.txt ]; then
# It is used for LM rescoring
python3 -m kaldilm \
--read-symbol-table="${lang_dir}/words.txt" \
--disambig-symbol='#0' \
--max-order=4 \
${dl_dir}/lm/4-gram.arpa > ${lm_dir}/G_4_gram.fst.txt
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Compile HLG"
# Note If ./local/compile_hlg.py throws OOM,
# please switch to the following command
#
# ./local/compile_hlg_using_openfst.py --lang-dir data/lang_phone
for vocab_size in ${vocab_sizes[@]}; do
bpe_lang_dir="data/lang_bpe_${vocab_size}"
echo "LM DIR: ${lm_dir}"
./local/compile_hlg.py \
--lm-dir "${lm_dir}" \
--lang-dir "${bpe_lang_dir}"
done
fi