mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
158 lines
5.1 KiB
Python
158 lines
5.1 KiB
Python
# Copyright 2021-2023 Xiaomi Corp. (authors: Xiaoyu Yang,
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import logging
|
|
import random
|
|
from typing import List, Optional, Tuple
|
|
|
|
import k2
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from encoder_interface import EncoderInterface
|
|
|
|
from icefall.utils import AttributeDict, make_pad_mask
|
|
|
|
|
|
class AudioTaggingModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
encoder_embed: nn.Module,
|
|
encoder: EncoderInterface,
|
|
encoder_dim: int = 384,
|
|
num_events: int = 527,
|
|
):
|
|
"""An audio tagging model
|
|
|
|
Args:
|
|
encoder_embed:
|
|
It is a Convolutional 2D subsampling module. It converts
|
|
an input of shape (N, T, idim) to an output of of shape
|
|
(N, T', odim), where T' = (T-3)//2-2 = (T-7)//2.
|
|
encoder:
|
|
It is the transcription network in the paper. Its accepts
|
|
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
|
|
It returns two tensors: `logits` of shape (N, T, encoder_dim) and
|
|
`logit_lens` of shape (N,).
|
|
encoder_dim:
|
|
Dimension of the encoder.
|
|
num_event:
|
|
The number of classes.
|
|
"""
|
|
super().__init__()
|
|
|
|
assert isinstance(encoder, EncoderInterface), type(encoder)
|
|
|
|
self.encoder_embed = encoder_embed
|
|
self.encoder = encoder
|
|
self.encoder_dim = encoder_dim
|
|
|
|
self.classifier = nn.Sequential(
|
|
nn.Dropout(0.1),
|
|
nn.Linear(encoder_dim, num_events),
|
|
)
|
|
|
|
# for multi-class classification
|
|
self.criterion = torch.nn.BCEWithLogitsLoss(reduction="sum")
|
|
|
|
def forward_encoder(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_lens: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Compute encoder outputs.
|
|
Args:
|
|
x:
|
|
A 3-D tensor of shape (N, T, C).
|
|
x_lens:
|
|
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
|
before padding.
|
|
|
|
Returns:
|
|
encoder_out:
|
|
Encoder output, of shape (N, T, C).
|
|
encoder_out_lens:
|
|
Encoder output lengths, of shape (N,).
|
|
"""
|
|
# logging.info(f"Memory allocated at entry: {torch.cuda.memory_allocated() // 1000000}M")
|
|
x, x_lens = self.encoder_embed(x, x_lens)
|
|
# logging.info(f"Memory allocated after encoder_embed: {torch.cuda.memory_allocated() // 1000000}M")
|
|
|
|
src_key_padding_mask = make_pad_mask(x_lens)
|
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
|
|
|
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
|
|
|
|
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
|
assert torch.all(encoder_out_lens > 0), (x_lens, encoder_out_lens)
|
|
|
|
return encoder_out, encoder_out_lens
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_lens: torch.Tensor,
|
|
target: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Args:
|
|
x:
|
|
A 3-D tensor of shape (N, T, C).
|
|
x_lens:
|
|
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
|
before padding.
|
|
target:
|
|
The ground truth label of audio events, could be many hot
|
|
Returns:
|
|
Return the binary crossentropy loss
|
|
"""
|
|
assert x.ndim == 3, x.shape
|
|
assert x_lens.ndim == 1, x_lens.shape
|
|
|
|
# Compute encoder outputs
|
|
encoder_out, encoder_out_lens = self.forward_encoder(x, x_lens)
|
|
|
|
# Forward the speaker module
|
|
logits = self.forward_audio_tagging(
|
|
encoder_out=encoder_out, encoder_out_lens=encoder_out_lens
|
|
) # (N, num_classes)
|
|
|
|
loss = self.criterion(logits, target)
|
|
|
|
return loss
|
|
|
|
def forward_audio_tagging(self, encoder_out, encoder_out_lens):
|
|
"""
|
|
Args:
|
|
encoder_out:
|
|
A 3-D tensor of shape (N, T, C).
|
|
encoder_out_lens:
|
|
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
|
before padding.
|
|
|
|
Returns:
|
|
A 3-D tensor of shape (N, num_classes).
|
|
"""
|
|
logits = self.classifier(encoder_out) # (N, T, num_classes)
|
|
padding_mask = make_pad_mask(encoder_out_lens)
|
|
logits[padding_mask] = 0
|
|
logits = logits.sum(dim=1) # mask the padding frames
|
|
logits = logits / (~padding_mask).sum(dim=1).unsqueeze(-1).expand_as(
|
|
logits
|
|
) # normalize the logits
|
|
|
|
return logits
|