mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
* merge upstream * initial commit for zipformer_ctc * remove unwanted changes * remove changes to other recipe * fix zipformer softlink * fix for JIT export * add missing file * fix symbolic links * update results * Update RESULTS.md Address comments from @csukuangfj --------- Co-authored-by: zr_jin <peter.jin.cn@gmail.com>
159 lines
5.6 KiB
Python
159 lines
5.6 KiB
Python
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import List
|
|
|
|
import k2
|
|
import torch
|
|
import torch.nn as nn
|
|
from encoder_interface import EncoderInterface
|
|
from transformer import encoder_padding_mask
|
|
|
|
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
|
from icefall.utils import encode_supervisions
|
|
|
|
|
|
class CTCModel(nn.Module):
|
|
"""It implements a CTC model with an auxiliary attention head."""
|
|
|
|
def __init__(
|
|
self,
|
|
encoder: EncoderInterface,
|
|
decoder: nn.Module,
|
|
encoder_dim: int,
|
|
vocab_size: int,
|
|
):
|
|
"""
|
|
Args:
|
|
encoder:
|
|
An instance of `EncoderInterface`. The shared encoder for the CTC and attention
|
|
branches
|
|
decoder:
|
|
An instance of `nn.Module`. This is the decoder for the attention branch.
|
|
encoder_dim:
|
|
Dimension of the encoder output.
|
|
decoder_dim:
|
|
Dimension of the decoder output.
|
|
vocab_size:
|
|
Number of tokens of the modeling unit including blank.
|
|
"""
|
|
super().__init__()
|
|
assert isinstance(encoder, EncoderInterface), type(encoder)
|
|
|
|
self.encoder = encoder
|
|
self.ctc_output = nn.Sequential(
|
|
nn.Dropout(p=0.1),
|
|
nn.Linear(encoder_dim, vocab_size),
|
|
nn.LogSoftmax(dim=-1),
|
|
)
|
|
self.decoder = decoder
|
|
|
|
@torch.jit.ignore
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_lens: torch.Tensor,
|
|
supervisions: torch.Tensor,
|
|
graph_compiler: BpeCtcTrainingGraphCompiler,
|
|
subsampling_factor: int = 1,
|
|
beam_size: int = 10,
|
|
reduction: str = "sum",
|
|
use_double_scores: bool = False,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
x:
|
|
Tensor of dimension (N, T, C) where N is the batch size,
|
|
T is the number of frames, and C is the feature dimension.
|
|
x_lens:
|
|
Tensor of dimension (N,) where N is the batch size.
|
|
supervisions:
|
|
Supervisions are used in training.
|
|
graph_compiler:
|
|
It is used to compile a decoding graph from texts.
|
|
subsampling_factor:
|
|
It is used to compute the `supervisions` for the encoder.
|
|
beam_size:
|
|
Beam size used in `k2.ctc_loss`.
|
|
reduction:
|
|
Reduction method used in `k2.ctc_loss`.
|
|
use_double_scores:
|
|
If True, use double precision in `k2.ctc_loss`.
|
|
Returns:
|
|
Return the CTC loss, attention loss, and the total number of frames.
|
|
"""
|
|
assert x.ndim == 3, x.shape
|
|
assert x_lens.ndim == 1, x_lens.shape
|
|
|
|
nnet_output, x_lens = self.encoder(x, x_lens)
|
|
assert torch.all(x_lens > 0)
|
|
# compute ctc log-probs
|
|
ctc_output = self.ctc_output(nnet_output)
|
|
|
|
# NOTE: We need `encode_supervisions` to sort sequences with
|
|
# different duration in decreasing order, required by
|
|
# `k2.intersect_dense` called in `k2.ctc_loss`
|
|
supervision_segments, texts = encode_supervisions(
|
|
supervisions, subsampling_factor=subsampling_factor
|
|
)
|
|
num_frames = supervision_segments[:, 2].sum().item()
|
|
|
|
# Works with a BPE model
|
|
token_ids = graph_compiler.texts_to_ids(texts)
|
|
decoding_graph = graph_compiler.compile(token_ids)
|
|
|
|
dense_fsa_vec = k2.DenseFsaVec(
|
|
ctc_output,
|
|
supervision_segments.cpu(),
|
|
allow_truncate=subsampling_factor - 1,
|
|
)
|
|
|
|
ctc_loss = k2.ctc_loss(
|
|
decoding_graph=decoding_graph,
|
|
dense_fsa_vec=dense_fsa_vec,
|
|
output_beam=beam_size,
|
|
reduction=reduction,
|
|
use_double_scores=use_double_scores,
|
|
)
|
|
|
|
if self.decoder is not None:
|
|
nnet_output = nnet_output.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
|
mmodel = (
|
|
self.decoder.module if hasattr(self.decoder, "module") else self.decoder
|
|
)
|
|
# Note: We need to generate an unsorted version of token_ids
|
|
# `encode_supervisions()` called above sorts text, but
|
|
# encoder_memory and memory_mask are not sorted, so we
|
|
# use an unsorted version `supervisions["text"]` to regenerate
|
|
# the token_ids
|
|
#
|
|
# See https://github.com/k2-fsa/icefall/issues/97
|
|
# for more details
|
|
unsorted_token_ids = graph_compiler.texts_to_ids(supervisions["text"])
|
|
mask = encoder_padding_mask(nnet_output.size(0), supervisions)
|
|
mask = mask.to(nnet_output.device) if mask is not None else None
|
|
att_loss = mmodel.forward(
|
|
nnet_output,
|
|
mask,
|
|
token_ids=unsorted_token_ids,
|
|
sos_id=graph_compiler.sos_id,
|
|
eos_id=graph_compiler.eos_id,
|
|
)
|
|
else:
|
|
att_loss = torch.tensor([0])
|
|
|
|
return ctc_loss, att_loss, num_frames
|