mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
573 lines
19 KiB
Python
Executable File
573 lines
19 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
|
|
# 2024 Yuekai Zhang
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Usage:
|
|
# For Chinese dataset, you can use the following command to download the Chinese fine-tuned whisper model.
|
|
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper
|
|
# Qwen Pretrained model
|
|
huggingface-cli download --local-dir models/Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-0.5B-Instruct
|
|
|
|
torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \
|
|
--max-duration 50 \
|
|
--enable-musan False \
|
|
--exp-dir $exp_dir \
|
|
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
|
|
--llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \
|
|
--manifest-dir data/fbank \
|
|
--deepspeed \
|
|
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
|
|
--use-flash-attn True \
|
|
--use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True
|
|
"""
|
|
|
|
import argparse
|
|
import copy
|
|
import logging
|
|
import os
|
|
import random
|
|
import warnings
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import deepspeed
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
import torch.nn as nn
|
|
import transformers
|
|
from datasets import load_dataset
|
|
|
|
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
|
|
from label_smoothing import LabelSmoothingLoss
|
|
|
|
from lhotse.utils import fix_random_seed
|
|
from model import IGNORE_TOKEN_ID, SPEECH_LLM
|
|
from peft import LoraConfig, get_peft_model
|
|
from torch import Tensor
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from transformers import (
|
|
AutoModelForCausalLM,
|
|
AutoTokenizer,
|
|
Qwen2Config,
|
|
Qwen2ForCausalLM,
|
|
)
|
|
from torchdata.stateful_dataloader import StatefulDataLoader
|
|
from torch.utils.data import DistributedSampler, DataLoader
|
|
|
|
from train import add_model_arguments, add_training_arguments, get_params, get_model
|
|
from utils import ( # filter_uneven_sized_batch,
|
|
AttributeDict,
|
|
MetricsTracker,
|
|
get_local_rank,
|
|
get_rank,
|
|
get_world_size,
|
|
setup_logger,
|
|
str2bool,
|
|
)
|
|
|
|
DEFAULT_SPEECH_TOKEN = "<speech>"
|
|
try:
|
|
torch.multiprocessing.set_start_method("spawn")
|
|
except RuntimeError:
|
|
pass
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--batch-size",
|
|
type=int,
|
|
default=16,
|
|
help="The batch size to use.",
|
|
)
|
|
|
|
parser = deepspeed.add_config_arguments(parser)
|
|
add_model_arguments(parser)
|
|
add_training_arguments(parser)
|
|
return parser
|
|
|
|
def preprocess(
|
|
messages,
|
|
tokenizer: transformers.PreTrainedTokenizer,
|
|
) -> Dict:
|
|
"""Preprocesses the data for supervised fine-tuning."""
|
|
texts = []
|
|
TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{ '<|im_end|>'}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}"
|
|
for i, msg in enumerate(messages):
|
|
texts.append(
|
|
tokenizer.apply_chat_template(
|
|
msg,
|
|
tokenize=True,
|
|
chat_template=TEMPLATE,
|
|
add_generation_prompt=False,
|
|
padding="longest", # FIX me change padding to longest
|
|
truncation=False,
|
|
)
|
|
)
|
|
if len(texts) != len(messages):
|
|
logging.warning(f"Remove too long text, {messages} ")
|
|
max_len_texts = max([len(text) for text in texts])
|
|
if tokenizer.padding_side == "right":
|
|
texts = [
|
|
text + [tokenizer.pad_token_id] * (max_len_texts - len(text))
|
|
for text in texts
|
|
]
|
|
else:
|
|
texts = [
|
|
[tokenizer.pad_token_id] * (max_len_texts - len(text)) + text
|
|
for text in texts
|
|
]
|
|
input_ids = torch.tensor(texts, dtype=torch.int)
|
|
|
|
target_ids = input_ids.clone()
|
|
target_ids[target_ids == tokenizer.pad_token_id] = IGNORE_TOKEN_ID
|
|
# mask all tokens before token_id <speech> with IGNORE_TOKEN_ID
|
|
# first get the indices of the tokens
|
|
mask_prompt = True
|
|
if mask_prompt:
|
|
default_speech_token_id = tokenizer.convert_tokens_to_ids(DEFAULT_SPEECH_TOKEN)
|
|
mask_indices = torch.where(input_ids == default_speech_token_id)
|
|
for i in range(mask_indices[0].size(0)):
|
|
row = mask_indices[0][i]
|
|
col = mask_indices[1][i]
|
|
# + 2 to skip: 'assistant', '\n'
|
|
# WAR: TODO FIXME check qwen3
|
|
# THIS IS THE ONLY DIFFERENCE FROM preprocess
|
|
target_ids[row, : col + 6] = IGNORE_TOKEN_ID
|
|
target_ids[row, col] = default_speech_token_id
|
|
# remove default_speech_token_id from target_ids and input_ids
|
|
batch_size = target_ids.size(0)
|
|
|
|
target_ids = target_ids[target_ids != default_speech_token_id].view(batch_size, -1)
|
|
input_ids = input_ids[input_ids != default_speech_token_id].view(batch_size, -1)
|
|
|
|
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
|
return input_ids, attention_mask, target_ids
|
|
|
|
def data_collator(batch):
|
|
speech_tokens, messages, durations, ids, lang, dnsmos = [], [], [], [], [], []
|
|
for i, item in enumerate(batch):
|
|
speech_tokens.append(item["code"])
|
|
message_list_item = []
|
|
message_list_item += [
|
|
{"role": "user", "content": f"Generate a speech from the following text:\n\n{item['text']}{DEFAULT_SPEECH_TOKEN}"},
|
|
{"role": "assistant", "content": item["text"]},
|
|
]
|
|
messages.append(message_list_item)
|
|
durations.append(item["duration"])
|
|
ids.append(item["id"])
|
|
lang.append(item["language"])
|
|
dnsmos.append(item["dnsmos"])
|
|
|
|
return {
|
|
"speech_tokens": speech_tokens,
|
|
"messages": messages,
|
|
"durations": durations,
|
|
"ids": ids,
|
|
"lang": lang,
|
|
"dnsmos": dnsmos,
|
|
}
|
|
|
|
def compute_loss(
|
|
params: AttributeDict,
|
|
tokenizer: AutoTokenizer,
|
|
model: nn.Module,
|
|
batch: dict,
|
|
is_training: bool,
|
|
) -> Tuple[Tensor, MetricsTracker]:
|
|
"""
|
|
Compute the loss for the given batch.
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
tokenizer:
|
|
The tokenizer used to encode the text.
|
|
model:
|
|
The model for training.
|
|
batch:
|
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
|
for the content in it.
|
|
is_training:
|
|
Whether it is training.
|
|
Returns:
|
|
Return a tuple of two elements. The first element is the loss tensor.
|
|
"""
|
|
device = next(model.parameters()).device
|
|
messages, answer_cosyvoice_speech_token = batch["messages"], batch["speech_tokens"]
|
|
input_ids, attention_mask, target_ids = preprocess(messages, tokenizer)
|
|
target_ids = target_ids.type(torch.LongTensor)
|
|
input_ids = input_ids.type(torch.LongTensor)
|
|
|
|
with torch.set_grad_enabled(is_training):
|
|
(
|
|
text_loss,
|
|
acc,
|
|
codec_loss,
|
|
codec_acc,
|
|
codec_topk_acc,
|
|
) = model.forward_with_speech_output(
|
|
input_ids=input_ids.to(device),
|
|
attention_mask=attention_mask.to(device),
|
|
labels=target_ids.to(device),
|
|
speech_codec_ids=answer_cosyvoice_speech_token,
|
|
)
|
|
loss = text_loss + codec_loss
|
|
assert loss.requires_grad == is_training
|
|
|
|
info = MetricsTracker()
|
|
info["frames"] = len(messages)
|
|
# Note: We use reduction=sum while computing the loss.
|
|
info["acc"] = acc * len(messages)
|
|
info["codec_acc"] = codec_acc * len(messages)
|
|
info["codec_topk_acc"] = codec_topk_acc * len(messages)
|
|
info["loss"] = loss.detach().cpu().item()
|
|
info["codec_loss"] = codec_loss.detach().cpu().item()
|
|
info["text_loss"] = text_loss.detach().cpu().item()
|
|
return loss, info
|
|
|
|
def compute_validation_loss(
|
|
params: AttributeDict,
|
|
tokenizer: AutoTokenizer,
|
|
model: nn.Module,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
world_size: int = 1,
|
|
) -> MetricsTracker:
|
|
"""Run the validation process."""
|
|
model.eval()
|
|
|
|
tot_loss = MetricsTracker()
|
|
|
|
for batch_idx, batch in enumerate(valid_dl):
|
|
with torch.amp.autocast("cuda", enabled=params.use_fp16):
|
|
loss, loss_info = compute_loss(
|
|
params=params,
|
|
tokenizer=tokenizer,
|
|
model=model,
|
|
batch=batch,
|
|
is_training=False,
|
|
)
|
|
assert loss.requires_grad is False
|
|
tot_loss = tot_loss + loss_info
|
|
|
|
# FIX ME
|
|
if world_size > 1:
|
|
tot_loss.reduce(loss.device)
|
|
|
|
loss_value = tot_loss["loss"]
|
|
if loss_value < params.best_valid_loss:
|
|
params.best_valid_epoch = params.cur_epoch
|
|
params.best_valid_loss = loss_value
|
|
|
|
return tot_loss
|
|
|
|
def train_one_epoch(
|
|
params: AttributeDict,
|
|
tokenizer: AutoTokenizer,
|
|
model: nn.Module,
|
|
optimizer: torch.optim.Optimizer,
|
|
scheduler: torch.optim.lr_scheduler,
|
|
train_dl: torch.utils.data.DataLoader,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
tb_writer: Optional[SummaryWriter] = None,
|
|
world_size: int = 1,
|
|
rank: int = 0,
|
|
) -> None:
|
|
"""Train the model for one epoch.
|
|
|
|
The training loss from the mean of all frames is saved in
|
|
`params.train_loss`. It runs the validation process every
|
|
`params.valid_interval` batches.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The model for training.
|
|
optimizer:
|
|
The optimizer we are using.
|
|
scheduler:
|
|
The learning rate scheduler, we call step() every step.
|
|
train_dl:
|
|
Dataloader for the training dataset.
|
|
valid_dl:
|
|
Dataloader for the validation dataset.
|
|
scaler:
|
|
The scaler used for mix precision training.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
tb_writer:
|
|
Writer to write log messages to tensorboard.
|
|
world_size:
|
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
|
rank:
|
|
The rank of the node in DDP training. If no DDP is used, it should
|
|
be set to 0.
|
|
"""
|
|
model.train()
|
|
# model.encoder.eval()
|
|
if not params.unfreeze_llm:
|
|
model.llm.eval()
|
|
tot_loss = MetricsTracker()
|
|
|
|
for batch_idx, batch in enumerate(train_dl):
|
|
params.batch_idx_train += 1
|
|
batch_size = len(batch["durations"])
|
|
if batch_idx % params.valid_interval == 0:
|
|
logging.info("Computing validation loss")
|
|
valid_info = compute_validation_loss(
|
|
params=params,
|
|
tokenizer=tokenizer,
|
|
model=model,
|
|
valid_dl=valid_dl,
|
|
world_size=world_size,
|
|
)
|
|
model.train()
|
|
# model.encoder.eval()
|
|
if not params.unfreeze_llm:
|
|
model.llm.eval()
|
|
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
|
logging.info(
|
|
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
|
)
|
|
if tb_writer is not None:
|
|
valid_info.write_summary(
|
|
tb_writer, "train/valid_", params.batch_idx_train
|
|
)
|
|
if batch_idx != 0:
|
|
model.save_checkpoint(
|
|
save_dir=params.exp_dir,
|
|
tag=f"zero-checkpoint-{params.batch_idx_train}",
|
|
client_state={},
|
|
exclude_frozen_parameters=True,
|
|
)
|
|
|
|
if rank == 0:
|
|
convert_zero_checkpoint_to_fp32_state_dict(
|
|
params.exp_dir,
|
|
f"{params.exp_dir}/checkpoint-{params.batch_idx_train}",
|
|
tag=f"zero-checkpoint-{params.batch_idx_train}",
|
|
exclude_frozen_parameters=True,
|
|
)
|
|
# save sampler state dict into checkpoint
|
|
# sampler_state_dict = train_dl.sampler.state_dict()
|
|
sampler_state_dict = train_dl.state_dict()
|
|
torch.save(
|
|
sampler_state_dict,
|
|
f"{params.exp_dir}/checkpoint-{params.batch_idx_train}/sampler.pt",
|
|
)
|
|
os.system(
|
|
f"rm -rf {params.exp_dir}/zero-checkpoint-{params.batch_idx_train}"
|
|
)
|
|
try:
|
|
with torch.amp.autocast("cuda", enabled=params.use_fp16):
|
|
loss, loss_info = compute_loss(
|
|
params=params,
|
|
tokenizer=tokenizer,
|
|
model=model,
|
|
batch=batch,
|
|
is_training=True,
|
|
)
|
|
# summary stats
|
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
|
|
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
|
# in the batch and there is no normalization to it so far.
|
|
|
|
# deepspeed's backward() is different from torch's backward()
|
|
# in that it does not accept a loss tensor as input.
|
|
# It computes the loss internally.
|
|
model.backward(loss)
|
|
model.step()
|
|
|
|
except: # noqa
|
|
raise
|
|
|
|
if batch_idx % params.log_interval == 0:
|
|
try:
|
|
cur_lr = scheduler.get_last_lr()[0]
|
|
except: # noqa
|
|
cur_lr = 0.0
|
|
|
|
logging.info(
|
|
f"Epoch {params.cur_epoch}, "
|
|
f"batch {batch_idx}, loss[{loss_info}], "
|
|
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
|
f"lr: {cur_lr:.2e}, "
|
|
)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar(
|
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
|
)
|
|
|
|
loss_info.write_summary(
|
|
tb_writer, "train/current_", params.batch_idx_train
|
|
)
|
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
|
|
|
loss_value = tot_loss["loss"]
|
|
params.train_loss = loss_value
|
|
if params.train_loss < params.best_train_loss:
|
|
params.best_train_epoch = params.cur_epoch
|
|
params.best_train_loss = params.train_loss
|
|
|
|
|
|
|
|
def run(rank, world_size, args):
|
|
"""
|
|
Args:
|
|
rank:
|
|
It is a value between 0 and `world_size-1`, which is
|
|
passed automatically by `mp.spawn()` in :func:`main`.
|
|
The node with rank 0 is responsible for saving checkpoint.
|
|
world_size:
|
|
Number of GPUs for DDP training.
|
|
args:
|
|
The return value of get_parser().parse_args()
|
|
"""
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
params.valid_interval = 2000
|
|
|
|
fix_random_seed(params.seed)
|
|
|
|
if rank == 0:
|
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
|
logging.info(params)
|
|
logging.info("About to create model")
|
|
model, tokenizer = get_model(params)
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", get_local_rank())
|
|
else:
|
|
device = torch.device("cpu")
|
|
logging.info(f"Device: {device}")
|
|
model.to(device)
|
|
|
|
assert params.deepspeed and world_size > 1
|
|
logging.info("Using DeepSpeed")
|
|
model, optimizer, _, scheduler = deepspeed.initialize(
|
|
args=params, model=model, model_parameters=model.parameters()
|
|
)
|
|
|
|
sampler_state_dict = None
|
|
if params.sampler_state_dict_path:
|
|
sampler_state_dict = torch.load(params.sampler_state_dict_path)
|
|
# print(params.dataset)
|
|
ds = load_dataset(params.dataset, split="train")
|
|
# shuffle the dataset
|
|
ds = ds.shuffle(seed=42)
|
|
train_test_split = ds.train_test_split(test_size=1000, seed=42)
|
|
train_dataset, eval_dataset = train_test_split["train"], train_test_split["test"]
|
|
# train_dataset, eval_dataset = train_test_split["test"], train_test_split["test"]
|
|
|
|
sampler = DistributedSampler(train_dataset, num_replicas=world_size, rank=rank)
|
|
train_dl = StatefulDataLoader(
|
|
train_dataset,
|
|
batch_size=params.batch_size,
|
|
sampler=sampler,
|
|
shuffle=False,
|
|
num_workers=4,
|
|
prefetch_factor=2,
|
|
collate_fn=data_collator
|
|
)
|
|
train_dl.load_state_dict(sampler_state_dict)
|
|
valid_sampler = DistributedSampler(eval_dataset, num_replicas=world_size, rank=rank)
|
|
valid_dl = DataLoader(
|
|
eval_dataset,
|
|
batch_size=params.batch_size,
|
|
sampler=valid_sampler,
|
|
shuffle=False,
|
|
num_workers=1,
|
|
prefetch_factor=1,
|
|
collate_fn=data_collator
|
|
)
|
|
|
|
if args.tensorboard and rank == 0:
|
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
|
else:
|
|
tb_writer = None
|
|
|
|
logging.info(f"start training from epoch {params.start_epoch}")
|
|
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
|
|
|
fix_random_seed(params.seed + epoch - 1)
|
|
train_dl.sampler.set_epoch(epoch - 1)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
|
|
|
params.cur_epoch = epoch
|
|
|
|
train_one_epoch(
|
|
params=params,
|
|
tokenizer=tokenizer,
|
|
model=model,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
train_dl=train_dl,
|
|
valid_dl=valid_dl,
|
|
tb_writer=tb_writer,
|
|
world_size=world_size,
|
|
rank=rank,
|
|
)
|
|
|
|
model.save_checkpoint(
|
|
save_dir=params.exp_dir,
|
|
tag=f"zero-epoch-{params.cur_epoch}",
|
|
client_state={},
|
|
exclude_frozen_parameters=True,
|
|
)
|
|
if rank == 0:
|
|
convert_zero_checkpoint_to_fp32_state_dict(
|
|
params.exp_dir,
|
|
f"{params.exp_dir}/epoch-{params.cur_epoch}",
|
|
tag=f"zero-epoch-{params.cur_epoch}",
|
|
exclude_frozen_parameters=True,
|
|
)
|
|
# save sampler state dict into checkpoint
|
|
# sampler_state_dict = train_dl.sampler.state_dict()
|
|
sampler_state_dict = train_dl.state_dict()
|
|
torch.save(
|
|
sampler_state_dict,
|
|
f"{params.exp_dir}/epoch-{params.cur_epoch}/sampler.pt",
|
|
)
|
|
|
|
os.system(f"rm -rf {params.exp_dir}/zero-epoch-{params.cur_epoch}")
|
|
|
|
logging.info("Done!")
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
world_size = get_world_size()
|
|
rank = get_rank()
|
|
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
warnings.filterwarnings("ignore", category=FutureWarning)
|
|
run(rank=rank, world_size=world_size, args=args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|