icefall/.github/scripts/run-librispeech-conformer-ctc3-2022-11-28.sh
Zengwei Yao ece728d895
Apply delay penalty on k2 ctc loss (#669)
* add init files

* fix bug, apply delay penalty

* fix decoding code and getting timestamps

* add option applying delay penalty on ctc log-prob

* fix bug of streaming decoding

* minor change for bpe-based case

* add test_model.py

* add README.md

* add CI
2022-11-28 22:34:02 +08:00

120 lines
3.3 KiB
Bash
Executable File

#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
cd egs/librispeech/ASR
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-conformer-ctc3-2022-11-27
log "Downloading pre-trained model from $repo_url"
git lfs install
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
log "Display test files"
tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav
pushd $repo/exp
git lfs pull --include "data/*"
git lfs pull --include "exp/jit_trace.pt"
git lfs pull --include "exp/pretrained.pt"
ln -s pretrained.pt epoch-99.pt
ls -lh *.pt
popd
log "Decode with models exported by torch.jit.trace()"
for m in ctc-decoding 1best; do
./conformer_ctc3/jit_pretrained.py \
--model-filename $repo/exp/jit_trace.pt \
--words-file $repo/data/lang_bpe_500/words.txt \
--HLG $repo/data/lang_bpe_500/HLG.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--G $repo/data/lm/G_4_gram.pt \
--method $m \
--sample-rate 16000 \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
done
log "Export to torchscript model"
./conformer_ctc3/export.py \
--exp-dir $repo/exp \
--lang-dir $repo/data/lang_bpe_500 \
--jit-trace 1 \
--epoch 99 \
--avg 1 \
--use-averaged-model 0
ls -lh $repo/exp/*.pt
log "Decode with models exported by torch.jit.trace()"
for m in ctc-decoding 1best; do
./conformer_ctc3/jit_pretrained.py \
--model-filename $repo/exp/jit_trace.pt \
--words-file $repo/data/lang_bpe_500/words.txt \
--HLG $repo/data/lang_bpe_500/HLG.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--G $repo/data/lm/G_4_gram.pt \
--method $m \
--sample-rate 16000 \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
done
for m in ctc-decoding 1best; do
./conformer_ctc3/pretrained.py \
--checkpoint $repo/exp/pretrained.pt \
--words-file $repo/data/lang_bpe_500/words.txt \
--HLG $repo/data/lang_bpe_500/HLG.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--G $repo/data/lm/G_4_gram.pt \
--method $m \
--sample-rate 16000 \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
done
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
mkdir -p conformer_ctc3/exp
ln -s $PWD/$repo/exp/pretrained.pt conformer_ctc3/exp/epoch-999.pt
ln -s $PWD/$repo/data/lang_bpe_500 data/
ls -lh data
ls -lh conformer_ctc3/exp
log "Decoding test-clean and test-other"
# use a small value for decoding with CPU
max_duration=100
for method in ctc-decoding 1best; do
log "Decoding with $method"
./conformer_ctc3/decode.py \
--epoch 999 \
--avg 1 \
--use-averaged-model 0 \
--exp-dir conformer_ctc3/exp/ \
--max-duration $max_duration \
--decoding-method $method \
--lm-dir data/lm
done
rm conformer_ctc3/exp/*.pt
fi