2023-06-20 17:09:52 +08:00

150 lines
5.8 KiB
ReStructuredText

.. _shallow_fusion:
Shallow fusion for RNN Transducer
=================================
External language models (LM) are commonly used to improve WERs for E2E ASR models.
This tutorial shows you how to perform ``shallow fusion`` with an external LM
to improve the word-error-rate of a RNN Transducer model.
.. note::
This tutorial is based on the recipe
`pruned_transducer_stateless7_streaming <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless7_streaming>`_,
which is a streaming transducer model trained on `LibriSpeech`_.
However, you can easily apply shallow fusion to other recipes.
If you encounter any problems, please open an issue here `icefall <https://github.com/k2-fsa/icefall/issues>`_.
.. note::
For simplicity, the training and testing corpus in this tutorial is the same (`LibriSpeech`_). However, you can change the testing set
to any other domains (e.g GigaSpeech) and use an external LM trained on that domain.
.. HINT::
We recommend you to use a GPU for decoding.
For illustration purpose, we will use a pre-trained ASR model from this `link <https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29>`_.
If you want to train your model from scratch, please have a look at :ref:`non_streaming_librispeech_pruned_transducer_stateless`.
As the initial step, let's download the pre-trained model.
.. code-block:: bash
$ git lfs install
$ git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
$ pushd icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp
$ ln -s pretrained.pt epoch-99.pt # create a symbolic link so that the checkpoint can be loaded
To test the model, let's have a look at the decoding results without using LM. This can be done via the following command:
.. code-block:: bash
$ exp_dir=./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp/
$ ./pruned_transducer_stateless7_streaming/decode.py \
--epoch 30 \
--avg 9 \
--exp-dir $exp_dir \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method modified_beam_search
The following WERs are achieved on test-clean and test-other:
.. code-block:: bash
$ For test-clean, WER of different settings are:
$ beam_size_4 3.11 best for test-clean
$ For test-other, WER of different settings are:
$ beam_size_4 7.93 best for test-other
These are already good numbers! But we can further improve it by using shallow fusion with external LM.
Training a language model usually takes a long time, we can download a pre-trained LM from this `link <https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm>`_.
.. code-block:: bash
$ git lfs install
$ git clone https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm
$ pushd icefall-librispeech-rnn-lm/exp
$ ln -s pretrained.pt epoch-99.pt # create a symbolic link so that the checkpoint can be loaded
$ popd
.. note::
This is an RNN LM trained on the LibriSpeech text corpus. So it might not be ideal for other corpus.
You may also train a RNN LM from scratch. Please refer to this `script <https://github.com/k2-fsa/icefall/blob/master/icefall/rnn_lm/train.py>`_
for training a RNN LM and this `script <https://github.com/k2-fsa/icefall/blob/master/icefall/transformer_lm/train.py>`_ to train a transformer LM.
To use shallow fusion for decoding, we can execute the following command:
.. code-block:: bash
$ exp_dir=./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp
$ lm_dir=./icefall-librispeech-rnn-lm/exp
$ ./pruned_transducer_stateless7_streaming/decode.py \
--epoch 99 \
--avg 1 \
--use-averaged-model False \
--beam-size 4 \
--exp-dir $exp_dir \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method modified_beam_search_lm_shallow_fusion \
--bpe-model ./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/data/lang_bpe_500/bpe.model
--use-shallow-fusion 1 \
--lm-type rnn \
--lm-exp-dir $lm_dir \
--lm-epoch 99 \
--lm-scale 0.29 \
--lm-avg 1 \
--rnn-lm-embedding-dim 2048 \
--rnn-lm-hidden-dim 2048 \
--rnn-lm-num-layers 3 \
--lm-vocab-size 500
Note that we set ``--decoding-method modified_beam_search_lm_shallow_fusion`` and ``--use-shallow-fusion True``
to use shallow fusion. ``--lm-type`` specifies the type of neural LM we are going to use, you can either choose
between ``rnn`` or ``transformer``. The following three arguments are associated with the rnn:
- ``--rnn-lm-embedding-dim``
The embedding dimension of the RNN LM
- ``--rnn-lm-hidden-dim``
The hidden dimension of the RNN LM
- ``--rnn-lm-num-layers``
The number of RNN layers in the RNN LM.
The decoding result obtained with the above command are shown below.
.. code-block:: bash
$ For test-clean, WER of different settings are:
$ beam_size_4 2.77 best for test-clean
$ For test-other, WER of different settings are:
$ beam_size_4 7.08 best for test-other
The improvement of shallow fusion is very obvious! The relative WER reduction on test-other is around 10.5%.
A few parameters can be tuned to further boost the performance of shallow fusion:
- ``--lm-scale``
Controls the scale of the LM. If too small, the external language model may not be fully utilized; if too large,
the LM score may dominant during decoding, leading to bad WER. A typical value of this is around 0.3.
- ``--beam-size``
The number of active paths in the search beam. It controls the trade-off between decoding efficiency and accuracy.