mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
163 lines
4.1 KiB
Python
Executable File
163 lines
4.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import argparse
|
|
import logging
|
|
|
|
import k2
|
|
import kaldifeat
|
|
import torch
|
|
import torchaudio
|
|
from conformer import Conformer
|
|
|
|
from icefall.decode import (
|
|
get_lattice,
|
|
one_best_decoding,
|
|
)
|
|
from icefall.utils import AttributeDict, get_texts
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--checkpoint",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the checkpoint."
|
|
"The checkpoint is assume to be saved by "
|
|
"icefall.checkpoint.save_checkpoint().",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--words-file",
|
|
type=str,
|
|
required=True,
|
|
help="Path to words.txt",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--hlg", type=str, required=True, help="Path to HLG.pt."
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--sound-file",
|
|
type=str,
|
|
required=True,
|
|
help="The input sound file to transcribe. "
|
|
"Supported formats are those that supported by torchaudio.load(). "
|
|
"For example, wav, flac are supported. "
|
|
"The sample rate has to be 16kHz.",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
params = AttributeDict(
|
|
{
|
|
"feature_dim": 80,
|
|
"nhead": 8,
|
|
"num_classes": 5000,
|
|
"attention_dim": 512,
|
|
"subsampling_factor": 4,
|
|
"num_decoder_layers": 6,
|
|
"vgg_frontend": False,
|
|
"is_espnet_structure": True,
|
|
"mmi_loss": False,
|
|
"use_feat_batchnorm": True,
|
|
"search_beam": 20,
|
|
"output_beam": 8,
|
|
"min_active_states": 30,
|
|
"max_active_states": 10000,
|
|
"use_double_scores": True,
|
|
}
|
|
)
|
|
return params
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
model = Conformer(
|
|
num_features=params.feature_dim,
|
|
nhead=params.nhead,
|
|
d_model=params.attention_dim,
|
|
num_classes=params.num_classes,
|
|
subsampling_factor=params.subsampling_factor,
|
|
num_decoder_layers=params.num_decoder_layers,
|
|
vgg_frontend=params.vgg_frontend,
|
|
is_espnet_structure=params.is_espnet_structure,
|
|
mmi_loss=params.mmi_loss,
|
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
|
)
|
|
|
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
|
model.load_state_dict(checkpoint["model"])
|
|
model.to(device)
|
|
|
|
HLG = k2.Fsa.from_dict(torch.load(params.hlg))
|
|
HLG = HLG.to(device)
|
|
|
|
model.to(device)
|
|
|
|
wave, samp_freq = torchaudio.load(params.sound_file)
|
|
wave = wave.squeeze().to(device)
|
|
|
|
opts = kaldifeat.FbankOptions()
|
|
opts.device = device
|
|
opts.frame_opts.dither = 0
|
|
opts.frame_opts.snip_edges = False
|
|
opts.frame_opts.samp_freq = samp_freq
|
|
opts.mel_opts.num_bins = 80
|
|
|
|
fbank = kaldifeat.Fbank(opts)
|
|
|
|
features = fbank(wave)
|
|
features = features.unsqueeze(0)
|
|
|
|
nnet_output, _, _ = model(features)
|
|
supervision_segments = torch.tensor(
|
|
[[0, 0, nnet_output.shape[1]]], dtype=torch.int32
|
|
)
|
|
|
|
lattice = get_lattice(
|
|
nnet_output=nnet_output,
|
|
HLG=HLG,
|
|
supervision_segments=supervision_segments,
|
|
search_beam=params.search_beam,
|
|
output_beam=params.output_beam,
|
|
min_active_states=params.min_active_states,
|
|
max_active_states=params.max_active_states,
|
|
subsampling_factor=params.subsampling_factor,
|
|
)
|
|
|
|
best_path = one_best_decoding(
|
|
lattice=lattice, use_double_scores=params.use_double_scores
|
|
)
|
|
|
|
hyps = get_texts(best_path)
|
|
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
|
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
|
logging.info(hyps)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = (
|
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
)
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|