icefall/egs/zipvoice/zipvoice/tts_datamodule.py
Wei Kang 06539d2b9d
Add Zipvoice (#1964)
* Add ZipVoice - a flow-matching based zero-shot TTS model.
2025-06-17 20:17:12 +08:00

457 lines
15 KiB
Python

# Copyright 2021 Piotr Żelasko
# Copyright 2022-2024 Xiaomi Corporation (Authors: Mingshuang Luo,
# Zengwei Yao,
# Zengrui Jin,
# Han Zhu,
# Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
from functools import lru_cache
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Sequence, Union
import torch
from feature import TorchAudioFbank, TorchAudioFbankConfig
from lhotse import CutSet, load_manifest_lazy, validate
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
DynamicBucketingSampler,
PrecomputedFeatures,
SimpleCutSampler,
)
from lhotse.dataset.collation import collate_audio
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
BatchIO,
OnTheFlyFeatures,
)
from lhotse.utils import fix_random_seed, ifnone
from torch.utils.data import DataLoader
from icefall.utils import str2bool
class _SeedWorkers:
def __init__(self, seed: int):
self.seed = seed
def __call__(self, worker_id: int):
fix_random_seed(self.seed + worker_id)
SAMPLING_RATE = 24000
class TtsDataModule:
"""
DataModule for tts experiments.
It assumes there is always one train and valid dataloader,
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
and test-other).
It contains all the common data pipeline modules used in ASR
experiments, e.g.:
- dynamic batch size,
- bucketing samplers,
- cut concatenation,
- on-the-fly feature extraction
This class should be derived for specific corpora used in ASR tasks.
"""
def __init__(self, args: argparse.Namespace):
self.args = args
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
group = parser.add_argument_group(
title="TTS data related options",
description="These options are used for the preparation of "
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
"effective batch sizes, sampling strategies, applied data "
"augmentations, etc.",
)
group.add_argument(
"--manifest-dir",
type=Path,
default=Path("data/fbank_emilia"),
help="Path to directory with train/valid/test cuts.",
)
group.add_argument(
"--max-duration",
type=int,
default=200.0,
help="Maximum pooled recordings duration (seconds) in a "
"single batch. You can reduce it if it causes CUDA OOM.",
)
group.add_argument(
"--bucketing-sampler",
type=str2bool,
default=True,
help="When enabled, the batches will come from buckets of "
"similar duration (saves padding frames).",
)
group.add_argument(
"--num-buckets",
type=int,
default=100,
help="The number of buckets for the DynamicBucketingSampler"
"(you might want to increase it for larger datasets).",
)
group.add_argument(
"--on-the-fly-feats",
type=str2bool,
default=False,
help="When enabled, use on-the-fly cut mixing and feature "
"extraction. Will drop existing precomputed feature manifests "
"if available.",
)
group.add_argument(
"--shuffle",
type=str2bool,
default=True,
help="When enabled (=default), the examples will be "
"shuffled for each epoch.",
)
group.add_argument(
"--drop-last",
type=str2bool,
default=True,
help="Whether to drop last batch. Used by sampler.",
)
group.add_argument(
"--return-cuts",
type=str2bool,
default=True,
help="When enabled, each batch will have the "
"field: batch['cut'] with the cuts that "
"were used to construct it.",
)
group.add_argument(
"--num-workers",
type=int,
default=8,
help="The number of training dataloader workers that "
"collect the batches.",
)
group.add_argument(
"--input-strategy",
type=str,
default="PrecomputedFeatures",
help="AudioSamples or PrecomputedFeatures",
)
def train_dataloaders(
self,
cuts_train: CutSet,
sampler_state_dict: Optional[Dict[str, Any]] = None,
) -> DataLoader:
"""
Args:
cuts_train:
CutSet for training.
sampler_state_dict:
The state dict for the training sampler.
"""
logging.info("About to create train dataset")
train = SpeechSynthesisDataset(
return_text=True,
return_tokens=True,
return_spk_ids=True,
feature_input_strategy=eval(self.args.input_strategy)(),
return_cuts=self.args.return_cuts,
)
if self.args.on_the_fly_feats:
sampling_rate = SAMPLING_RATE
config = TorchAudioFbankConfig(
sampling_rate=sampling_rate,
n_mels=100,
n_fft=1024,
hop_length=256,
)
train = SpeechSynthesisDataset(
return_text=True,
return_tokens=True,
return_spk_ids=True,
feature_input_strategy=OnTheFlyFeatures(TorchAudioFbank(config)),
return_cuts=self.args.return_cuts,
)
if self.args.bucketing_sampler:
logging.info("Using DynamicBucketingSampler.")
train_sampler = DynamicBucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
buffer_size=self.args.num_buckets * 2000,
shuffle_buffer_size=self.args.num_buckets * 5000,
drop_last=self.args.drop_last,
)
else:
logging.info("Using SimpleCutSampler.")
train_sampler = SimpleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
)
logging.info("About to create train dataloader")
if sampler_state_dict is not None:
logging.info("Loading sampler state dict")
train_sampler.load_state_dict(sampler_state_dict)
# 'seed' is derived from the current random state, which will have
# previously been set in the main process.
seed = torch.randint(0, 100000, ()).item()
worker_init_fn = _SeedWorkers(seed)
train_dl = DataLoader(
train,
sampler=train_sampler,
batch_size=None,
num_workers=self.args.num_workers,
persistent_workers=False,
worker_init_fn=worker_init_fn,
)
return train_dl
def dev_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
logging.info("About to create dev dataset")
if self.args.on_the_fly_feats:
sampling_rate = SAMPLING_RATE
config = TorchAudioFbankConfig(
sampling_rate=sampling_rate,
n_mels=100,
n_fft=1024,
hop_length=256,
)
validate = SpeechSynthesisDataset(
return_text=True,
return_tokens=True,
return_spk_ids=True,
feature_input_strategy=OnTheFlyFeatures(TorchAudioFbank(config)),
return_cuts=self.args.return_cuts,
)
else:
validate = SpeechSynthesisDataset(
return_text=True,
return_tokens=True,
return_spk_ids=True,
feature_input_strategy=eval(self.args.input_strategy)(),
return_cuts=self.args.return_cuts,
)
dev_sampler = DynamicBucketingSampler(
cuts_valid,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.info("About to create valid dataloader")
dev_dl = DataLoader(
validate,
sampler=dev_sampler,
batch_size=None,
num_workers=2,
persistent_workers=False,
)
return dev_dl
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
logging.info("About to create test dataset")
if self.args.on_the_fly_feats:
sampling_rate = SAMPLING_RATE
config = TorchAudioFbankConfig(
sampling_rate=sampling_rate,
n_mels=100,
n_fft=1024,
hop_length=256,
)
test = SpeechSynthesisDataset(
return_text=True,
return_tokens=True,
return_spk_ids=True,
feature_input_strategy=OnTheFlyFeatures(TorchAudioFbank(config)),
return_cuts=self.args.return_cuts,
return_audio=True,
)
else:
test = SpeechSynthesisDataset(
return_text=True,
return_tokens=True,
return_spk_ids=True,
feature_input_strategy=eval(self.args.input_strategy)(),
return_cuts=self.args.return_cuts,
return_audio=True,
)
test_sampler = DynamicBucketingSampler(
cuts,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.info("About to create test dataloader")
test_dl = DataLoader(
test,
batch_size=None,
sampler=test_sampler,
num_workers=self.args.num_workers,
)
return test_dl
@lru_cache()
def train_emilia_EN_cuts(self) -> CutSet:
logging.info("About to get train the EN subset")
return load_manifest_lazy(self.args.manifest_dir / "emilia_cuts_EN.jsonl.gz")
@lru_cache()
def train_emilia_ZH_cuts(self) -> CutSet:
logging.info("About to get train the ZH subset")
return load_manifest_lazy(self.args.manifest_dir / "emilia_cuts_ZH.jsonl.gz")
@lru_cache()
def dev_emilia_EN_cuts(self) -> CutSet:
logging.info("About to get dev the EN subset")
return load_manifest_lazy(
self.args.manifest_dir / "emilia_cuts_EN-dev.jsonl.gz"
)
@lru_cache()
def dev_emilia_ZH_cuts(self) -> CutSet:
logging.info("About to get dev the ZH subset")
return load_manifest_lazy(
self.args.manifest_dir / "emilia_cuts_ZH-dev.jsonl.gz"
)
@lru_cache()
def train_libritts_cuts(self) -> CutSet:
logging.info(
"About to get the shuffled train-clean-100, \
train-clean-360 and train-other-500 cuts"
)
return load_manifest_lazy(
self.args.manifest_dir / "libritts_cuts_train-all-shuf.jsonl.gz"
)
@lru_cache()
def dev_libritts_cuts(self) -> CutSet:
logging.info("About to get dev-clean cuts")
return load_manifest_lazy(
self.args.manifest_dir / "libritts_cuts_dev-clean.jsonl.gz"
)
class SpeechSynthesisDataset(torch.utils.data.Dataset):
"""
The PyTorch Dataset for the speech synthesis task.
Each item in this dataset is a dict of:
.. code-block::
{
'audio': (B x NumSamples) float tensor
'features': (B x NumFrames x NumFeatures) float tensor
'audio_lens': (B, ) int tensor
'features_lens': (B, ) int tensor
'text': List[str] of len B # when return_text=True
'tokens': List[List[str]] # when return_tokens=True
'speakers': List[str] of len B # when return_spk_ids=True
'cut': List of Cuts # when return_cuts=True
}
"""
def __init__(
self,
cut_transforms: List[Callable[[CutSet], CutSet]] = None,
feature_input_strategy: BatchIO = PrecomputedFeatures(),
feature_transforms: Union[Sequence[Callable], Callable] = None,
return_text: bool = True,
return_tokens: bool = False,
return_spk_ids: bool = False,
return_cuts: bool = False,
return_audio: bool = False,
) -> None:
super().__init__()
self.cut_transforms = ifnone(cut_transforms, [])
self.feature_input_strategy = feature_input_strategy
self.return_text = return_text
self.return_tokens = return_tokens
self.return_spk_ids = return_spk_ids
self.return_cuts = return_cuts
self.return_audio = return_audio
if feature_transforms is None:
feature_transforms = []
elif not isinstance(feature_transforms, Sequence):
feature_transforms = [feature_transforms]
assert all(
isinstance(transform, Callable) for transform in feature_transforms
), "Feature transforms must be Callable"
self.feature_transforms = feature_transforms
def __getitem__(self, cuts: CutSet) -> Dict[str, torch.Tensor]:
validate_for_tts(cuts)
for transform in self.cut_transforms:
cuts = transform(cuts)
features, features_lens = self.feature_input_strategy(cuts)
for transform in self.feature_transforms:
features = transform(features)
batch = {
"features": features,
"features_lens": features_lens,
}
if self.return_audio:
audio, audio_lens = collate_audio(cuts)
batch["audio"] = audio
batch["audio_lens"] = audio_lens
if self.return_text:
# use normalized text
text = [cut.supervisions[0].normalized_text for cut in cuts]
batch["text"] = text
if self.return_tokens:
tokens = [cut.tokens for cut in cuts]
batch["tokens"] = tokens
if self.return_spk_ids:
batch["speakers"] = [cut.supervisions[0].speaker for cut in cuts]
if self.return_cuts:
batch["cut"] = [cut for cut in cuts]
return batch
def validate_for_tts(cuts: CutSet) -> None:
validate(cuts)
for cut in cuts:
assert (
len(cut.supervisions) == 1
), "Only the Cuts with single supervision are supported."