2023-05-15 16:03:01 +08:00

1148 lines
35 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang,
# Wei Kang,
# Mingshuang Luo,)
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./pruned_transducer_stateless7/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--exp-dir pruned_transducer_stateless7/exp \
--full-libri 1 \
--max-duration 300
# For mix precision training:
./pruned_transducer_stateless7/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir pruned_transducer_stateless7/exp \
--full-libri 1 \
--max-duration 550
"""
import argparse
import copy
import logging
import random
import warnings
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import k2
import numpy
import optim
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from lm_datamodule import LmDataset, LmDataloader
from subformer import Subformer
from scaling import ScheduledFloat
from lhotse.utils import fix_random_seed
from decoder import Decoder
from model import SubformerLM
from optim import Eden, ScaledAdam
from torch import Tensor
from torch import nn
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from icefall import diagnostics
from icefall.checkpoint import load_checkpoint, remove_checkpoints
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
from icefall.checkpoint import (
save_checkpoint_with_global_batch_idx,
update_averaged_model,
)
from icefall.hooks import register_inf_check_hooks
from icefall.dist import cleanup_dist, setup_dist, get_world_size
from icefall.env import get_env_info
from icefall.utils import (
AttributeDict,
MetricsTracker,
setup_logger,
str2bool,
get_parameter_groups_with_lrs
)
LRSchedulerType = Union[
torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
]
def get_adjusted_batch_count(
params: AttributeDict) -> float:
# don't do any adjustment for now.
# This is for purposes of set_batch_count().
return params.batch_idx_train
def set_batch_count(
model: Union[nn.Module, DDP], batch_count: float
) -> None:
if isinstance(model, DDP):
# get underlying nn.Module
model = model.module
for name, module in model.named_modules():
if hasattr(module, 'batch_count'):
module.batch_count = batch_count
if hasattr(module, 'name'):
module.name = name
def add_model_arguments(parser: argparse.ArgumentParser):
parser.add_argument(
"--num-encoder-layers",
type=str,
default="2,4,8,4,2",
help="Number of subformer encoder layers per stack, comma separated.",
)
parser.add_argument(
"--downsampling-factor",
type=str,
default="1,2,4,2,1",
help="Downsampling factor for each stack of encoder layers.",
)
parser.add_argument(
"--feedforward-dim",
type=str,
default="512,768,1024,768,512",
help="Feedforward dimension of the subformer encoder layers, per stack, comma separated.",
)
parser.add_argument(
"--num-heads",
type=str,
default="4,4,8,4,4",
help="Number of attention heads in the subformer encoder layers: a single int or comma-separated list.",
)
parser.add_argument(
"--encoder-dim",
type=str,
default="256,256,384,256,256",
help="Embedding dimension in encoder stacks: a single int or comma-separated list."
)
parser.add_argument(
"--query-head-dim",
type=str,
default="32",
help="Query/key dimension per head in encoder stacks: a single int or comma-separated list."
)
parser.add_argument(
"--value-head-dim",
type=str,
default="12",
help="Value dimension per head in encoder stacks: a single int or comma-separated list."
)
parser.add_argument(
"--pos-dim",
type=str,
default="4",
help="Positional-encoding dimension in encoder stacks: a single int or comma-separated list."
)
parser.add_argument(
"--encoder-unmasked-dim",
type=str,
default="192,192,256,192,192",
help="Unmasked dimensions in the encoders, relates to augmentation during training. "
"A single int or comma-separated list. Must be <= each corresponding encoder_dim."
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--world-size",
type=int,
default=1,
help="Number of GPUs for DDP training.",
)
parser.add_argument(
"--master-port",
type=int,
default=12354,
help="Master port to use for DDP training.",
)
parser.add_argument(
"--tensorboard",
type=str2bool,
default=True,
help="Should various information be logged in tensorboard.",
)
parser.add_argument(
"--num-epochs",
type=int,
default=30,
help="Number of epochs to train.",
)
parser.add_argument(
"--start-epoch",
type=int,
default=1,
help="""Resume training from this epoch. It should be positive.
If larger than 1, it will load checkpoint from
exp-dir/epoch-{start_epoch-1}.pt
""",
)
parser.add_argument(
"--start-batch",
type=int,
default=0,
help="""If positive, --start-epoch is ignored and
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
""",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless7/exp",
help="""The experiment dir.
It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--base-lr",
type=float,
default=0.045,
help="The base learning rate."
)
parser.add_argument(
"--lr-batches",
type=float,
default=7500,
help="""Number of steps that affects how rapidly the learning rate
decreases. We suggest not to change this.""",
)
parser.add_argument(
"--lr-tokens",
type=float,
default=1000000000,
help="""Number of tokens beyond which the LR will start to decrease per token, defines
LR schedule, replacing lr-epochs
""",
)
parser.add_argument(
"--ref-duration",
type=float,
default=600,
help="Reference batch duration for purposes of adjusting batch counts for setting various "
"schedules inside the model"
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
parser.add_argument(
"--prune-range",
type=int,
default=5,
help="The prune range for rnnt loss, it means how many symbols(context)"
"we are using to compute the loss",
)
parser.add_argument(
"--lm-scale",
type=float,
default=0.25,
help="The scale to smooth the loss with lm "
"(output of prediction network) part.",
)
parser.add_argument(
"--am-scale",
type=float,
default=0.0,
help="The scale to smooth the loss with am (output of encoder network)"
"part.",
)
parser.add_argument(
"--simple-loss-scale",
type=float,
default=0.5,
help="To get pruning ranges, we will calculate a simple version"
"loss(joiner is just addition), this simple loss also uses for"
"training (as a regularization item). We will scale the simple loss"
"with this parameter before adding to the final loss.",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="The seed for random generators intended for reproducibility",
)
parser.add_argument(
"--print-diagnostics",
type=str2bool,
default=False,
help="Accumulate stats on activations, print them and exit.",
)
parser.add_argument(
"--inf-check",
type=str2bool,
default=False,
help="Add hooks to check for infinite module outputs and gradients.",
)
parser.add_argument(
"--save-every-n",
type=int,
default=4000,
help="""Save checkpoint after processing this number of batches"
periodically. We save checkpoint to exp-dir/ whenever
params.batch_idx_train % save_every_n == 0. The checkpoint filename
has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
end of each epoch where `xxx` is the epoch number counting from 0.
""",
)
parser.add_argument(
"--keep-last-k",
type=int,
default=30,
help="""Only keep this number of checkpoints on disk.
For instance, if it is 3, there are only 3 checkpoints
in the exp-dir with filenames `checkpoint-xxx.pt`.
It does not affect checkpoints with name `epoch-xxx.pt`.
""",
)
parser.add_argument(
"--average-period",
type=int,
default=200,
help="""Update the averaged model, namely `model_avg`, after processing
this number of batches. `model_avg` is a separate version of model,
in which each floating-point parameter is the average of all the
parameters from the start of training. Each time we take the average,
we do: `model_avg = model * (average_period / batch_idx_train) +
model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
""",
)
parser.add_argument(
"--use-fp16",
type=str2bool,
default=False,
help="Whether to use half precision training.",
)
add_model_arguments(parser)
return parser
def get_params() -> AttributeDict:
"""Return a dict containing training parameters.
All training related parameters that are not passed from the commandline
are saved in the variable `params`.
Commandline options are merged into `params` after they are parsed, so
you can also access them via `params`.
Explanation of options saved in `params`:
- best_train_loss: Best training loss so far. It is used to select
the model that has the lowest training loss. It is
updated during the training.
- best_valid_loss: Best validation loss so far. It is used to select
the model that has the lowest validation loss. It is
updated during the training.
- best_train_epoch: It is the epoch that has the best training loss.
- best_valid_epoch: It is the epoch that has the best validation loss.
- batch_idx_train: Used to writing statistics to tensorboard. It
contains number of batches trained so far across
epochs.
- log_interval: Print training loss if batch_idx % log_interval` is 0
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
- valid_interval: Run validation if batch_idx % valid_interval is 0
- feature_dim: The model input dim. It has to match the one used
in computing features.
- subsampling_factor: The subsampling factor for the model.
- encoder_dim: Hidden dim for multi-head attention model.
- num_decoder_layers: Number of decoder layer of transformer decoder.
- warm_step: The warmup period that dictates the decay of the
scale on "simple" (un-pruned) loss.
"""
params = AttributeDict(
{
"best_train_loss": float("inf"),
"best_valid_loss": float("inf"),
"best_train_epoch": -1,
"best_valid_epoch": -1,
"batch_idx_train": 0,
"log_interval": 50,
"reset_interval": 200,
"valid_interval": 3000,
"warm_step": 2000,
"env_info": get_env_info(),
"bytes_per_segment": 2048,
"batch_size": 16,
"train_file_list": "train.txt",
"valid_file_list": "valid.txt",
"num_workers": 4,
}
)
return params
def _to_int_tuple(s: str):
return tuple(map(int, s.split(',')))
def get_encoder_embed(params: AttributeDict) -> nn.Module:
return nn.Embedding(
num_embeddings=256, # we encode the text as UTF-8 bytes
embedding_dim=_to_int_tuple(params.encoder_dim)[0],
)
def get_encoder_model(params: AttributeDict) -> nn.Module:
#chunk_size = _to_int_tuple(params.downsampling_factor)[-1]
encoder = Subformer(
#output_downsampling_factor=chunk_size,
downsampling_factor=_to_int_tuple(params.downsampling_factor),
num_encoder_layers=_to_int_tuple(params.num_encoder_layers),
encoder_dim=_to_int_tuple(params.encoder_dim),
encoder_unmasked_dim=_to_int_tuple(params.encoder_unmasked_dim),
query_head_dim=_to_int_tuple(params.query_head_dim),
pos_dim=int(params.pos_dim),
value_head_dim=_to_int_tuple(params.value_head_dim),
num_heads=_to_int_tuple(params.num_heads),
feedforward_dim=_to_int_tuple(params.feedforward_dim),
dropout=ScheduledFloat((0.0, 0.3), (20000.0, 0.1)),
warmup_batches=4000.0,
causal=True,
)
return encoder
def get_decoder_model(params: AttributeDict) -> nn.Module:
decoder = Decoder(
embed_dim=max(_to_int_tuple(params.encoder_dim)),
vocab_size=256, # bytes
)
return decoder
def get_model(params: AttributeDict) -> nn.Module:
encoder_embed = get_encoder_embed(params)
encoder = get_encoder_model(params)
decoder = get_decoder_model(params)
model = SubformerLM(
encoder_embed=encoder_embed,
encoder=encoder,
decoder=decoder,
)
return model
def load_checkpoint_if_available(
params: AttributeDict,
model: nn.Module,
model_avg: nn.Module = None,
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
) -> Optional[Dict[str, Any]]:
"""Load checkpoint from file.
If params.start_batch is positive, it will load the checkpoint from
`params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
params.start_epoch is larger than 1, it will load the checkpoint from
`params.start_epoch - 1`.
Apart from loading state dict for `model` and `optimizer` it also updates
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
and `best_valid_loss` in `params`.
Args:
params:
The return value of :func:`get_params`.
model:
The training model.
model_avg:
The stored model averaged from the start of training.
optimizer:
The optimizer that we are using.
scheduler:
The scheduler that we are using.
Returns:
Return a dict containing previously saved training info.
"""
if params.start_batch > 0:
filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
elif params.start_epoch > 1:
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
else:
return None
assert filename.is_file(), f"{filename} does not exist!"
saved_params = load_checkpoint(
filename,
model=model,
model_avg=model_avg,
optimizer=optimizer,
scheduler=scheduler,
)
keys = [
"best_train_epoch",
"best_valid_epoch",
"batch_idx_train",
"best_train_loss",
"best_valid_loss",
]
for k in keys:
params[k] = saved_params[k]
if params.start_batch > 0:
if "cur_epoch" in saved_params:
params["start_epoch"] = saved_params["cur_epoch"]
if "cur_batch_idx" in saved_params:
params["cur_batch_idx"] = saved_params["cur_batch_idx"]
return saved_params
def save_checkpoint(
params: AttributeDict,
model: Union[nn.Module, DDP],
model_avg: Optional[nn.Module] = None,
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
scaler: Optional[GradScaler] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
Args:
params:
It is returned by :func:`get_params`.
model:
The training model.
model_avg:
The stored model averaged from the start of training.
optimizer:
The optimizer used in the training.
scaler:
The scaler used for mix precision training.
"""
if rank != 0:
return
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
save_checkpoint_impl(
filename=filename,
model=model,
model_avg=model_avg,
params=params,
optimizer=optimizer,
scheduler=scheduler,
scaler=scaler,
rank=rank,
)
if params.best_train_epoch == params.cur_epoch:
best_train_filename = params.exp_dir / "best-train-loss.pt"
copyfile(src=filename, dst=best_train_filename)
if params.best_valid_epoch == params.cur_epoch:
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
copyfile(src=filename, dst=best_valid_filename)
def _encode_texts_as_bytes(texts: List[str], device: torch.device) -> Tuple[Tensor, Tensor, Tensor]:
"""
Encode texts as bytes and then integer tensors.
Args:
texts: the texts to encode, as a list of strings
device: the PyTorch device we want the texts on
Returns:
(text, text_lens, style_lens), where:
text: a torch.Tensor of shape (batch_size, text_len) containing integers
0 <= i < 256
text_lens: a torch.Tensor of shape (batch_size,), giving the length of each byt
sequence
style_lens: a torch.Tensor of shape (batch_size,), giving the length of each
style prompt (style prompts are supposed to come first). Since there is no
style prompt here, this is just all zeros.
"""
texts = [ bytes(s, 'UTF-8') for s in texts ]
N = len(texts)
lengths = [ len(s) for s in texts ]
max_len = max(lengths)
texts = [ s + (b'\0' * (max_len - len(s))) for s in texts ]
text = b''.join(texts) # bytes array containing all of the texts
text = torch.Tensor(numpy.frombuffer(text, dtype=numpy.uint8)).to(device)
text = text.to(dtype=torch.long)
text = text.reshape(N, max_len)
text_lens = torch.tensor(lengths).to(device)
style_lens = torch.zeros(N, dtype=torch.long, device=device)
# print(f"text={text}, text_lens={text_lens}, style_lens={style_lens}")
return text, text_lens, style_lens
def compute_loss(
params: AttributeDict,
model: Union[nn.Module, DDP],
batch: Tensor,
is_training: bool,
) -> Tuple[Tensor, MetricsTracker]:
"""
Compute cross-entropy loss given the model and its inputs.
Args:
params:
Parameters for training. See :func:`get_params`.
model:
The model for training. It is an instance of Subformer in our case.
batch:
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
for the content in it.
is_training:
True for training. False for validation. When it is True, this
function enables autograd during computation; when it is False, it
disables autograd.
warmup: a floating point value which increases throughout training;
values >= 1.0 are fully warmed up and have all modules present.
"""
device = (
model.device
if isinstance(model, DDP)
else next(model.parameters()).device
)
labels = batch.to(device) # (batch_size, sequence_length)
with torch.set_grad_enabled(is_training):
loglikes = model(labels)
loss = -loglikes.sum()
assert loss.requires_grad == is_training
info = MetricsTracker()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
info["frames"] = (
labels.numel()
)
# Note: We use reduction=sum while computing the loss.
info["loss"] = loss.detach().cpu().item()
return loss, info
def compute_validation_loss(
params: AttributeDict,
model: Union[nn.Module, DDP],
valid_dl: torch.utils.data.DataLoader,
world_size: int = 1,
) -> MetricsTracker:
"""Run the validation process."""
model.eval()
tot_loss = MetricsTracker()
for batch_idx, batch in enumerate(valid_dl):
loss, loss_info = compute_loss(
params=params,
model=model,
batch=batch,
is_training=False,
)
assert loss.requires_grad is False
tot_loss = tot_loss + loss_info
if world_size > 1:
tot_loss.reduce(loss.device)
loss_value = tot_loss["loss"] / tot_loss["frames"]
if loss_value < params.best_valid_loss:
params.best_valid_epoch = params.cur_epoch
params.best_valid_loss = loss_value
return tot_loss
def train_one_epoch(
params: AttributeDict,
model: Union[nn.Module, DDP],
optimizer: torch.optim.Optimizer,
scheduler: LRSchedulerType,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
model_avg: Optional[nn.Module] = None,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
rank: int = 0,
) -> None:
"""Train the model for one epoch.
The training loss from the mean of all frames is saved in
`params.train_loss`. It runs the validation process every
`params.valid_interval` batches.
Args:
params:
It is returned by :func:`get_params`.
model:
The model for training.
optimizer:
The optimizer we are using.
scheduler:
The learning rate scheduler, we call step() every step.
train_dl:
Dataloader for the training dataset.
valid_dl:
Dataloader for the validation dataset.
scaler:
The scaler used for mix precision training.
model_avg:
The stored model averaged from the start of training.
tb_writer:
Writer to write log messages to tensorboard.
world_size:
Number of nodes in DDP training. If it is 1, DDP is disabled.
rank:
The rank of the node in DDP training. If no DDP is used, it should
be set to 0.
"""
model.train()
tot_loss = MetricsTracker()
cur_batch_idx = params.get("cur_batch_idx", 0)
saved_bad_model = False
def save_bad_model(suffix: str = ""):
save_checkpoint_impl(filename=params.exp_dir / f"bad-model{suffix}-{rank}.pt",
model=model,
model_avg=model_avg,
params=params,
optimizer=optimizer,
scheduler=scheduler,
scaler=scaler,
rank=0)
for batch_idx, batch in enumerate(train_dl):
if batch_idx % 10 == 0:
set_batch_count(model, get_adjusted_batch_count(params))
if batch_idx < cur_batch_idx:
continue
cur_batch_idx = batch_idx
params.batch_idx_train += 1
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
batch=batch,
is_training=True,
)
# summary stats
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
# NOTE: We use reduction==sum and loss is computed over utterances
# in the batch and there is no normalization to it so far.
scaler.scale(loss).backward()
scheduler.step_batch(params.batch_idx_train)
tokens_seen = params.batch_idx_train * params.bytes_per_segment * params.batch_size * get_world_size()
# we make the formula depend on tokens not epochs, replacing lr_epochs with lr_tokens.
scheduler.step_epoch(tokens_seen)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
except: # noqa
save_bad_model()
display_and_save_batch(batch, params=params)
raise
if params.print_diagnostics and batch_idx == 5:
return
if (
rank == 0
and params.batch_idx_train > 0
and params.batch_idx_train % params.average_period == 0
):
update_averaged_model(
params=params,
model_cur=model,
model_avg=model_avg,
)
if (
params.batch_idx_train > 0
and params.batch_idx_train % params.save_every_n == 0
):
params.cur_batch_idx = batch_idx
save_checkpoint_with_global_batch_idx(
out_dir=params.exp_dir,
global_batch_idx=params.batch_idx_train,
model=model,
model_avg=model_avg,
params=params,
optimizer=optimizer,
scheduler=scheduler,
scaler=scaler,
rank=rank,
)
del params.cur_batch_idx
remove_checkpoints(
out_dir=params.exp_dir,
topk=params.keep_last_k,
rank=rank,
)
if batch_idx % 100 == 0 and params.use_fp16:
# If the grad scale was less than 1, try increasing it. The _growth_interval
# of the grad scaler is configurable, but we can't configure it to have different
# behavior depending on the current grad scale.
cur_grad_scale = scaler._scale.item()
if cur_grad_scale < 8.0 or (cur_grad_scale < 32.0 and batch_idx % 400 == 0):
scaler.update(cur_grad_scale * 2.0)
if cur_grad_scale < 0.01:
if not saved_bad_model:
save_bad_model(suffix="-first-warning")
saved_bad_model = True
logging.warning(f"Grad scale is small: {cur_grad_scale}")
if cur_grad_scale < 1.0e-05:
save_bad_model()
raise RuntimeError(f"grad_scale is too small, exiting: {cur_grad_scale}")
if batch_idx % params.log_interval == 0:
cur_lr = max(scheduler.get_last_lr())
cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0
logging.info(
f"Epoch {params.cur_epoch}, "
f"batch {batch_idx}, loss[{loss_info}], "
f"tot_loss[{tot_loss}], tokens: {tokens_seen} "
f"lr: {cur_lr:.2e}, " +
(f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "")
)
if tb_writer is not None:
tb_writer.add_scalar(
"train/learning_rate", cur_lr, params.batch_idx_train
)
loss_info.write_summary(
tb_writer, "train/current_", params.batch_idx_train
)
tot_loss.write_summary(
tb_writer, "train/tot_", params.batch_idx_train
)
if params.use_fp16:
tb_writer.add_scalar(
"train/grad_scale", cur_grad_scale, params.batch_idx_train
)
if batch_idx % params.valid_interval == 0 and not params.print_diagnostics:
logging.info("Computing validation loss")
valid_info = compute_validation_loss(
params=params,
model=model,
valid_dl=valid_dl,
world_size=world_size,
)
model.train()
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
logging.info(f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB")
if tb_writer is not None:
valid_info.write_summary(
tb_writer, "train/valid_", params.batch_idx_train
)
loss_value = tot_loss["loss"] / tot_loss["frames"]
params.train_loss = loss_value
if params.train_loss < params.best_train_loss:
params.best_train_epoch = params.cur_epoch
params.best_train_loss = params.train_loss
def run(rank, world_size, args):
"""
Args:
rank:
It is a value between 0 and `world_size-1`, which is
passed automatically by `mp.spawn()` in :func:`main`.
The node with rank 0 is responsible for saving checkpoint.
world_size:
Number of GPUs for DDP training.
args:
The return value of get_parser().parse_args()
"""
params = get_params()
params.update(vars(args))
fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
setup_logger(f"{params.exp_dir}/log/log-train")
logging.info("Training started")
if args.tensorboard and rank == 0:
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
else:
tb_writer = None
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", rank)
logging.info(f"Device: {device}")
logging.info(params)
logging.info("About to create model")
model = get_model(params)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
assert params.save_every_n >= params.average_period
model_avg: Optional[nn.Module] = None
if rank == 0:
# model_avg is only used with rank 0
model_avg = copy.deepcopy(model).to(torch.float64)
assert params.start_epoch > 0, params.start_epoch
checkpoints = load_checkpoint_if_available(
params=params, model=model, model_avg=model_avg
)
model.to(device)
if world_size > 1:
logging.info("Using DDP")
model = DDP(model, device_ids=[rank],
find_unused_parameters=True)
optimizer = ScaledAdam(
get_parameter_groups_with_lrs(
model, lr=params.base_lr, include_names=True),
lr=params.base_lr, # should have no effect
clipping_scale=2.0,
)
scheduler = Eden(optimizer, params.lr_batches, params.lr_tokens)
if checkpoints and "optimizer" in checkpoints:
logging.info("Loading optimizer state dict")
optimizer.load_state_dict(checkpoints["optimizer"])
if (
checkpoints
and "scheduler" in checkpoints
and checkpoints["scheduler"] is not None
):
logging.info("Loading scheduler state dict")
scheduler.load_state_dict(checkpoints["scheduler"])
if params.print_diagnostics:
opts = diagnostics.TensorDiagnosticOptions(
2 ** 22
) # allow 4 megabytes per sub-module
diagnostic = diagnostics.attach_diagnostics(model, opts)
if params.inf_check:
register_inf_check_hooks(model)
train = LmDataset(params.train_file_list,
bytes_per_segment=params.bytes_per_segment,)
train_dl = LmDataloader(train, batch_size=params.batch_size,
num_workers=params.num_workers)
valid = LmDataset(params.valid_file_list,
bytes_per_segment=params.bytes_per_segment)
valid_dl = LmDataloader(valid, batch_size=params.batch_size,
num_workers=params.num_workers)
scaler = GradScaler(enabled=params.use_fp16,
init_scale=1.0)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
for epoch in range(params.start_epoch, params.num_epochs + 1):
# we don't do step_epoch per epoch as the dataset might be large, we do this
# to let it know how many tokens we have processed so far, and have a
# soft-cutoff lr_tokens measured in tokens.
# scheduler.step_epoch(epoch - 1)
fix_random_seed(params.seed + epoch - 1)
# the above will affect random seeds in the dataloaders.
if tb_writer is not None:
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
params.cur_epoch = epoch
train_one_epoch(
params=params,
model=model,
model_avg=model_avg,
optimizer=optimizer,
scheduler=scheduler,
train_dl=train_dl,
valid_dl=valid_dl,
scaler=scaler,
tb_writer=tb_writer,
world_size=world_size,
rank=rank,
)
if params.print_diagnostics:
diagnostic.print_diagnostics()
break
save_checkpoint(
params=params,
model=model,
model_avg=model_avg,
optimizer=optimizer,
scheduler=scheduler,
scaler=scaler,
rank=rank,
)
logging.info("Done!")
if world_size > 1:
torch.distributed.barrier()
cleanup_dist()
def display_and_save_batch(
batch: Tensor,
params: AttributeDict,
) -> None:
"""Display the batch statistics and save the batch into disk.
Args:
batch:
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
for the content in it.
params:
Parameters for training. See :func:`get_params`.
"""
from lhotse.utils import uuid4
filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
logging.info(f"Saving batch to {filename}")
torch.save({'labels': batch}, filename)
def main():
parser = get_parser()
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
world_size = args.world_size
assert world_size >= 1
if world_size > 1:
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
else:
run(rank=0, world_size=1, args=args)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
if __name__ == "__main__":
main()