Daniel Povey 03ad0d7910 Remove concept of epochs from training subformer for language modeling;
revert dimensions to how they were in zlm53.
2023-06-19 04:45:37 +08:00

231 lines
6.5 KiB
Python

#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
from pathlib import Path
from train import get_model, get_params, add_model_arguments
from typing import Tuple
import torch
from lm_datamodule import LmDataset
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import (
AttributeDict,
setup_logger,
str2bool,
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=9,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. If True, it would decode "
"with the averaged model over this many checkpoints."
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless7_streaming/exp",
help="The experiment dir",
)
add_model_arguments(parser)
return parser
def evaluate_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: torch.nn.Module,
) -> Tuple[float, float]:
"""Compute the validation loss on a given validation set
Args:
dl (torch.utils.data.DataLoader): PyTorch's dataloader containing the dataset
params (AttributeDict): It is returned by :func:`get_params`.
model (nn.Module): The neural model
"""
tot_loss = 0
tot_frames = 0
num_cuts = 0
log_interval = 50
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
device = next(model.parameters()).device
with torch.set_grad_enabled(False):
for batch_idx, batch in enumerate(dl):
labels = batch.to(device) # (batch_size, sequence_length)
loglikes = model(labels)
loss = -loglikes.sum()
assert loss.requires_grad is False
num_cuts += labels.size(0)
tot_loss += loss
tot_frames += labels.numel()
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
return tot_loss.item(), tot_frames
def main():
parser = get_parser()
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
params.res_dir = params.exp_dir / "log-evaluation"
assert params.iter > 0
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
setup_logger(f"{params.res_dir}/log-validation-{params.suffix}")
logging.info(params)
logging.info("Evaluation started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
model = get_model(params)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
if not params.use_averaged_model:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
valid = LmDataset(params.valid_file_list,
bytes_per_segment=params.bytes_per_segment)
valid_dl = torch.utils.data.DataLoader(
dataset=valid,
batch_size=params.batch_size,
num_workers=params.num_workers,
drop_last=False)
logging.info("Evaluation started!")
tot_loss, tot_frames = evaluate_dataset(
dl=valid_dl,
params=params,
model=model,
)
logging.info(f"Validation loss: {tot_loss/tot_frames} over {tot_frames} frames.")
logging.info("Finished!")
if __name__ == "__main__":
main()