mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-18 21:44:18 +00:00
231 lines
6.5 KiB
Python
231 lines
6.5 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright 2021 Xiaomi Corp. (authors: Xiaoyu Yang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
from train import get_model, get_params, add_model_arguments
|
|
from typing import Tuple
|
|
import torch
|
|
|
|
from lm_datamodule import LmDataset
|
|
|
|
from icefall.checkpoint import (
|
|
average_checkpoints,
|
|
average_checkpoints_with_averaged_model,
|
|
find_checkpoints,
|
|
load_checkpoint,
|
|
)
|
|
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
setup_logger,
|
|
str2bool,
|
|
)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--iter",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, it
|
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
You can specify --avg to use more checkpoints for model averaging.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=9,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--iter'",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-averaged-model",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to load averaged model. If True, it would decode "
|
|
"with the averaged model over this many checkpoints."
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="pruned_transducer_stateless7_streaming/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
def evaluate_dataset(
|
|
dl: torch.utils.data.DataLoader,
|
|
params: AttributeDict,
|
|
model: torch.nn.Module,
|
|
) -> Tuple[float, float]:
|
|
"""Compute the validation loss on a given validation set
|
|
|
|
Args:
|
|
dl (torch.utils.data.DataLoader): PyTorch's dataloader containing the dataset
|
|
params (AttributeDict): It is returned by :func:`get_params`.
|
|
model (nn.Module): The neural model
|
|
"""
|
|
tot_loss = 0
|
|
tot_frames = 0
|
|
num_cuts = 0
|
|
|
|
log_interval = 50
|
|
try:
|
|
num_batches = len(dl)
|
|
except TypeError:
|
|
num_batches = "?"
|
|
|
|
device = next(model.parameters()).device
|
|
|
|
with torch.set_grad_enabled(False):
|
|
for batch_idx, batch in enumerate(dl):
|
|
|
|
labels = batch.to(device) # (batch_size, sequence_length)
|
|
|
|
loglikes = model(labels)
|
|
loss = -loglikes.sum()
|
|
|
|
assert loss.requires_grad is False
|
|
|
|
num_cuts += labels.size(0)
|
|
tot_loss += loss
|
|
tot_frames += labels.numel()
|
|
|
|
if batch_idx % log_interval == 0:
|
|
batch_str = f"{batch_idx}/{num_batches}"
|
|
|
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
|
|
|
return tot_loss.item(), tot_frames
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
params.res_dir = params.exp_dir / "log-evaluation"
|
|
|
|
assert params.iter > 0
|
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
|
|
|
if params.use_averaged_model:
|
|
params.suffix += "-use-averaged-model"
|
|
|
|
setup_logger(f"{params.res_dir}/log-validation-{params.suffix}")
|
|
logging.info(params)
|
|
logging.info("Evaluation started")
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"Device: {device}")
|
|
|
|
model = get_model(params)
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
if not params.use_averaged_model:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
|
|
else:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg + 1
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg + 1:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
filename_start = filenames[-1]
|
|
filename_end = filenames[0]
|
|
logging.info(
|
|
"Calculating the averaged model over iteration checkpoints"
|
|
f" from {filename_start} (excluded) to {filename_end}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
|
|
model.to(device)
|
|
model.eval()
|
|
|
|
valid = LmDataset(params.valid_file_list,
|
|
bytes_per_segment=params.bytes_per_segment)
|
|
valid_dl = torch.utils.data.DataLoader(
|
|
dataset=valid,
|
|
batch_size=params.batch_size,
|
|
num_workers=params.num_workers,
|
|
drop_last=False)
|
|
|
|
logging.info("Evaluation started!")
|
|
tot_loss, tot_frames = evaluate_dataset(
|
|
dl=valid_dl,
|
|
params=params,
|
|
model=model,
|
|
)
|
|
|
|
logging.info(f"Validation loss: {tot_loss/tot_frames} over {tot_frames} frames.")
|
|
logging.info("Finished!")
|
|
|
|
if __name__ == "__main__":
|
|
main()
|