mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
218 lines
6.0 KiB
Bash
Executable File
218 lines
6.0 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
set -eou pipefail
|
|
|
|
nj=15
|
|
stage=10
|
|
stop_stage=12
|
|
|
|
# Split L subset to this number of pieces
|
|
# This is to avoid OOM during feature extraction.
|
|
num_splits=1000
|
|
|
|
# We assume dl_dir (download dir) contains the following
|
|
# directories and files. If not, they will be downloaded
|
|
# by this script automatically.
|
|
#
|
|
# - $dl_dir/WenetSpeech
|
|
# You can find audio, WenetSpeech.json inside it.
|
|
# You can apply for the download credentials by following
|
|
# https://github.com/wenet-e2e/WenetSpeech#download
|
|
#
|
|
# - $dl_dir/musan
|
|
# This directory contains the following directories downloaded from
|
|
# http://www.openslr.org/17/
|
|
#
|
|
# - music
|
|
# - noise
|
|
# - speech
|
|
|
|
dl_dir=$PWD/download
|
|
|
|
. shared/parse_options.sh || exit 1
|
|
|
|
# All files generated by this script are saved in "data".
|
|
# You can safely remove "data" and rerun this script to regenerate it.
|
|
mkdir -p data
|
|
|
|
log() {
|
|
# This function is from espnet
|
|
local fname=${BASH_SOURCE[1]##*/}
|
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
}
|
|
|
|
log "dl_dir: $dl_dir"
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
log "Stage 0: Download data"
|
|
|
|
[ ! -e $dl_dir/WenetSpeech ] && mkdir -p $dl_dir/WenetSpeech
|
|
|
|
# If you have pre-downloaded it to /path/to/WenetSpeech,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/WenetSpeech $dl_dir/WenetSpeech
|
|
#
|
|
if [ ! -d $dl_dir/WenetSpeech/audio ] && [ ! -f $dl_dir/WenetSpeech.json ]; then
|
|
log "Stage 0: should download WenetSpeech first"
|
|
exit 1;
|
|
fi
|
|
|
|
# If you have pre-downloaded it to /path/to/musan,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/musan $dl_dir/
|
|
#
|
|
if [ ! -d $dl_dir/musan ]; then
|
|
lhotse download musan $dl_dir
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
log "Stage 1: Prepare WenetSpeech manifest (may take 15 minutes)"
|
|
# We assume that you have downloaded the WenetSpeech corpus
|
|
# to $dl_dir/WenetSpeech
|
|
mkdir -p data/manifests
|
|
lhotse prepare wenet-speech $dl_dir/WenetSpeech data/manifests -j $nj
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 2: Prepare musan manifest"
|
|
# We assume that you have downloaded the musan corpus
|
|
# to $dl_dir/musan
|
|
mkdir -p data/manifests
|
|
lhotse prepare musan $dl_dir/musan data/manifests
|
|
fi
|
|
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
log "State 3: Preprocess WenetSpeech manifest"
|
|
if [ ! -f data/fbank/.preprocess_complete ]; then
|
|
python3 ./local/preprocess_wenetspeech.py
|
|
touch data/fbank/.preprocess_complete
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
log "Stage 4: Compute features for DEV and TEST subsets of WenetSpeech (may take 2 minutes)"
|
|
python3 ./local/compute_fbank_wenetspeech_dev_test.py
|
|
fi
|
|
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
log "Stage 5: Split L subset into ${num_splits} pieces (may take 30 minutes)"
|
|
split_dir=data/fbank/L_split_${num_splits}
|
|
if [ ! -f $split_dir/.split_completed ]; then
|
|
lhotse split $num_splits ./data/fbank/cuts_L_raw.jsonl.gz $split_dir
|
|
touch $split_dir/.split_completed
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|
log "Stage 6: Compute features for L"
|
|
python3 ./local/compute_fbank_wenetspeech_splits.py \
|
|
--num-workers 20 \
|
|
--batch-duration 600 \
|
|
--start 1000 \
|
|
--num-splits $num_splits
|
|
fi
|
|
|
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
|
log "Stage 7: Combine features for L"
|
|
if [ ! -f data/fbank/cuts_L.jsonl.gz ]; then
|
|
pieces=$(find data/fbank/L_split_${num_splits} -name "cuts_L.*.jsonl.gz")
|
|
lhotse combine $pieces data/fbank/cuts_L.jsonl.gz
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
|
log "Stage 8: Compute fbank for musan"
|
|
mkdir -p data/fbank
|
|
./local/compute_fbank_musan.py
|
|
fi
|
|
|
|
lang_char_dir=data/lang_char
|
|
|
|
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
|
log "Stage 9: Prepare char based lang"
|
|
mkdir -p $lang_char_dir
|
|
|
|
gunzip -c data/manifests/supervisions_L.jsonl.gz \
|
|
| jq '.text' | sed 's/"//g' \
|
|
| ./local/text2token.py -t "char" > $lang_char_dir/text
|
|
|
|
cat $lang_char_dir/text | sed 's/ /\n/g' \
|
|
| sort -u | sed '/^$/d' > $lang_char_dir/words.txt
|
|
(echo '<SIL>'; echo '<SPOKEN_NOISE>'; echo '<UNK>'; ) |
|
|
cat - $lang_char_dir/words.txt | sort | uniq | awk '
|
|
BEGIN {
|
|
print "<eps> 0";
|
|
}
|
|
{
|
|
if ($1 == "<s>") {
|
|
print "<s> is in the vocabulary!" | "cat 1>&2"
|
|
exit 1;
|
|
}
|
|
if ($1 == "</s>") {
|
|
print "</s> is in the vocabulary!" | "cat 1>&2"
|
|
exit 1;
|
|
}
|
|
printf("%s %d\n", $1, NR);
|
|
}
|
|
END {
|
|
printf("#0 %d\n", NR+1);
|
|
printf("<s> %d\n", NR+2);
|
|
printf("</s> %d\n", NR+3);
|
|
}' > $lang_char_dir/words || exit 1;
|
|
|
|
mv $lang_char_dir/words $lang_char_dir/words.txt
|
|
fi
|
|
|
|
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
|
if [ ! -f $lang_char_dir/L_disambig.pt ]; then
|
|
./local/prepare_char.py
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
|
|
log "Stage 11: Prepare G"
|
|
# We assume you have install kaldilm, if not, please install
|
|
# it using: pip install kaldilm
|
|
|
|
mkdir -p data/lm
|
|
if [ ! -f data/lm/3-gram.arpa ]; then
|
|
./shared/make_kn_lm.py \
|
|
-ngram-order 3 \
|
|
-text "data/lang_char/text" \
|
|
-lm data/lm/3-gram.arpa
|
|
fi
|
|
|
|
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
|
|
# It is used in building HLG
|
|
python3 -m kaldilm \
|
|
--read-symbol-table="data/lang_char/words.txt" \
|
|
--disambig-symbol='#0' \
|
|
--max-order=3 \
|
|
data/lm/3-gram.arpa > data/lm/G_3_gram.fst.txt
|
|
fi
|
|
|
|
if [ ! -f data/lm/4-gram.arpa ]; then
|
|
./shared/make_kn_lm.py \
|
|
-ngram-order 4 \
|
|
-text "data/lang_char/text" \
|
|
-lm data/lm/4-gram.arpa
|
|
fi
|
|
|
|
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
|
|
# It is used for LM rescoring
|
|
python3 -m kaldilm \
|
|
--read-symbol-table="data/lang_char/words.txt" \
|
|
--disambig-symbol='#0' \
|
|
--max-order=4 \
|
|
data/lm/4-gram.arpa > data/lm/G_4_gram.fst.txt
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
|
log "Stage 12: Compile HLG"
|
|
./local/compile_hlg.py --lang-dir $lang_char_dir
|
|
fi
|