mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
317 lines
11 KiB
Python
317 lines
11 KiB
Python
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
|
|
# Copyright 2023 Johns Hopkins University (author: Desh Raj)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import List, Optional, Tuple
|
|
|
|
import k2
|
|
import torch
|
|
import torch.nn as nn
|
|
from encoder_interface import EncoderInterface
|
|
|
|
from icefall.utils import add_sos
|
|
|
|
|
|
class SURT(nn.Module):
|
|
"""It implements Streaming Unmixing and Recognition Transducer (SURT).
|
|
https://arxiv.org/abs/2011.13148
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
mask_encoder: nn.Module,
|
|
encoder: EncoderInterface,
|
|
joint_encoder_layer: Optional[nn.Module],
|
|
decoder: nn.Module,
|
|
joiner: nn.Module,
|
|
num_channels: int,
|
|
encoder_dim: int,
|
|
decoder_dim: int,
|
|
joiner_dim: int,
|
|
vocab_size: int,
|
|
):
|
|
"""
|
|
Args:
|
|
mask_encoder:
|
|
It is the masking network. It generates a mask for each channel of the
|
|
encoder. These masks are applied to the input features, and then passed
|
|
to the transcription network.
|
|
encoder:
|
|
It is the transcription network in the paper. Its accepts
|
|
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
|
|
It returns two tensors: `logits` of shape (N, T, encoder_dm) and
|
|
`logit_lens` of shape (N,).
|
|
decoder:
|
|
It is the prediction network in the paper. Its input shape
|
|
is (N, U) and its output shape is (N, U, decoder_dim).
|
|
It should contain one attribute: `blank_id`.
|
|
joiner:
|
|
It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim).
|
|
Its output shape is (N, T, U, vocab_size). Note that its output contains
|
|
unnormalized probs, i.e., not processed by log-softmax.
|
|
num_channels:
|
|
It is the number of channels that the input features will be split into.
|
|
In general, it should be equal to the maximum number of simultaneously
|
|
active speakers. For most real scenarios, using 2 channels is sufficient.
|
|
"""
|
|
super().__init__()
|
|
assert isinstance(encoder, EncoderInterface), type(encoder)
|
|
assert hasattr(decoder, "blank_id")
|
|
|
|
self.mask_encoder = mask_encoder
|
|
self.encoder = encoder
|
|
self.joint_encoder_layer = joint_encoder_layer
|
|
self.decoder = decoder
|
|
self.joiner = joiner
|
|
self.num_channels = num_channels
|
|
|
|
self.simple_am_proj = nn.Linear(
|
|
encoder_dim,
|
|
vocab_size,
|
|
)
|
|
self.simple_lm_proj = nn.Linear(decoder_dim, vocab_size)
|
|
|
|
self.ctc_output = nn.Sequential(
|
|
nn.Dropout(p=0.1),
|
|
nn.Linear(encoder_dim, vocab_size),
|
|
nn.LogSoftmax(dim=-1),
|
|
)
|
|
|
|
def forward_helper(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_lens: torch.Tensor,
|
|
y: k2.RaggedTensor,
|
|
prune_range: int = 5,
|
|
am_scale: float = 0.0,
|
|
lm_scale: float = 0.0,
|
|
reduction: str = "sum",
|
|
beam_size: int = 10,
|
|
use_double_scores: bool = False,
|
|
subsampling_factor: int = 1,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Compute transducer loss for one branch of the SURT model.
|
|
"""
|
|
encoder_out, x_lens = self.encoder(x, x_lens)
|
|
assert torch.all(x_lens > 0)
|
|
|
|
if self.joint_encoder_layer is not None:
|
|
encoder_out = self.joint_encoder_layer(encoder_out)
|
|
|
|
# compute ctc log-probs
|
|
ctc_output = self.ctc_output(encoder_out)
|
|
|
|
# For the decoder, i.e., the prediction network
|
|
row_splits = y.shape.row_splits(1)
|
|
y_lens = row_splits[1:] - row_splits[:-1]
|
|
|
|
blank_id = self.decoder.blank_id
|
|
sos_y = add_sos(y, sos_id=blank_id)
|
|
|
|
# sos_y_padded: [B, S + 1], start with SOS.
|
|
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
|
|
|
# decoder_out: [B, S + 1, decoder_dim]
|
|
decoder_out = self.decoder(sos_y_padded)
|
|
|
|
# Note: y does not start with SOS
|
|
# y_padded : [B, S]
|
|
y_padded = y.pad(mode="constant", padding_value=0)
|
|
|
|
y_padded = y_padded.to(torch.int64)
|
|
boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device)
|
|
boundary[:, 2] = y_lens
|
|
boundary[:, 3] = x_lens
|
|
|
|
lm = self.simple_lm_proj(decoder_out)
|
|
am = self.simple_am_proj(encoder_out)
|
|
|
|
with torch.cuda.amp.autocast(enabled=False):
|
|
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
|
|
lm=lm.float(),
|
|
am=am.float(),
|
|
symbols=y_padded,
|
|
termination_symbol=blank_id,
|
|
lm_only_scale=lm_scale,
|
|
am_only_scale=am_scale,
|
|
boundary=boundary,
|
|
reduction=reduction,
|
|
return_grad=True,
|
|
)
|
|
|
|
# ranges : [B, T, prune_range]
|
|
ranges = k2.get_rnnt_prune_ranges(
|
|
px_grad=px_grad,
|
|
py_grad=py_grad,
|
|
boundary=boundary,
|
|
s_range=prune_range,
|
|
)
|
|
|
|
# am_pruned : [B, T, prune_range, encoder_dim]
|
|
# lm_pruned : [B, T, prune_range, decoder_dim]
|
|
am_pruned, lm_pruned = k2.do_rnnt_pruning(
|
|
am=self.joiner.encoder_proj(encoder_out),
|
|
lm=self.joiner.decoder_proj(decoder_out),
|
|
ranges=ranges,
|
|
)
|
|
|
|
# logits : [B, T, prune_range, vocab_size]
|
|
|
|
# project_input=False since we applied the decoder's input projections
|
|
# prior to do_rnnt_pruning (this is an optimization for speed).
|
|
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
|
|
|
|
with torch.cuda.amp.autocast(enabled=False):
|
|
pruned_loss = k2.rnnt_loss_pruned(
|
|
logits=logits.float(),
|
|
symbols=y_padded,
|
|
ranges=ranges,
|
|
termination_symbol=blank_id,
|
|
boundary=boundary,
|
|
reduction=reduction,
|
|
)
|
|
|
|
# Compute ctc loss
|
|
supervision_segments = torch.stack(
|
|
(
|
|
torch.arange(len(x_lens), device="cpu"),
|
|
torch.zeros_like(x_lens, device="cpu"),
|
|
torch.clone(x_lens).detach().cpu(),
|
|
),
|
|
dim=1,
|
|
).to(torch.int32)
|
|
# We need to sort supervision_segments in decreasing order of num_frames
|
|
indices = torch.argsort(supervision_segments[:, 2], descending=True)
|
|
supervision_segments = supervision_segments[indices]
|
|
|
|
# Works with a BPE model
|
|
decoding_graph = k2.ctc_graph(y, modified=False, device=x.device)
|
|
dense_fsa_vec = k2.DenseFsaVec(
|
|
ctc_output,
|
|
supervision_segments,
|
|
allow_truncate=subsampling_factor - 1,
|
|
)
|
|
ctc_loss = k2.ctc_loss(
|
|
decoding_graph=decoding_graph,
|
|
dense_fsa_vec=dense_fsa_vec,
|
|
output_beam=beam_size,
|
|
reduction="none",
|
|
use_double_scores=use_double_scores,
|
|
)
|
|
|
|
return (simple_loss, pruned_loss, ctc_loss)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_lens: torch.Tensor,
|
|
y: k2.RaggedTensor,
|
|
prune_range: int = 5,
|
|
am_scale: float = 0.0,
|
|
lm_scale: float = 0.0,
|
|
reduction: str = "sum",
|
|
beam_size: int = 10,
|
|
use_double_scores: bool = False,
|
|
subsampling_factor: int = 1,
|
|
return_masks: bool = False,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Args:
|
|
x:
|
|
A 3-D tensor of shape (N, T, C).
|
|
x_lens:
|
|
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
|
before padding.
|
|
y:
|
|
A ragged tensor of shape (N*num_channels, S). It contains the labels
|
|
of the N utterances. The labels are in the range [0, vocab_size). All
|
|
the channels are concatenated together one after another.
|
|
prune_range:
|
|
The prune range for rnnt loss, it means how many symbols(context)
|
|
we are considering for each frame to compute the loss.
|
|
am_scale:
|
|
The scale to smooth the loss with am (output of encoder network)
|
|
part
|
|
lm_scale:
|
|
The scale to smooth the loss with lm (output of predictor network)
|
|
part
|
|
reduction:
|
|
"sum" to sum the losses over all utterances in the batch.
|
|
"none" to return the loss in a 1-D tensor for each utterance
|
|
in the batch.
|
|
beam_size:
|
|
The beam size used in CTC decoding.
|
|
use_double_scores:
|
|
If True, use double precision for CTC decoding.
|
|
subsampling_factor:
|
|
The subsampling factor of the model. It is used to compute the
|
|
supervision segments for CTC loss.
|
|
return_masks:
|
|
If True, return the masks as well as masked features.
|
|
Returns:
|
|
Return the transducer loss.
|
|
|
|
Note:
|
|
Regarding am_scale & lm_scale, it will make the loss-function one of
|
|
the form:
|
|
lm_scale * lm_probs + am_scale * am_probs +
|
|
(1-lm_scale-am_scale) * combined_probs
|
|
"""
|
|
assert x.ndim == 3, x.shape
|
|
assert x_lens.ndim == 1, x_lens.shape
|
|
assert y.num_axes == 2, y.num_axes
|
|
|
|
assert x.size(0) == x_lens.size(0), (x.size(), x_lens.size())
|
|
|
|
# Apply the mask encoder
|
|
B, T, F = x.shape
|
|
processed = self.mask_encoder(x) # B,T,F*num_channels
|
|
masks = processed.view(B, T, F, self.num_channels).unbind(dim=-1)
|
|
x_masked = [x * m for m in masks]
|
|
|
|
# Recognition
|
|
# Stack the inputs along the batch axis
|
|
h = torch.cat(x_masked, dim=0)
|
|
h_lens = torch.cat([x_lens for _ in range(self.num_channels)], dim=0)
|
|
|
|
simple_loss, pruned_loss, ctc_loss = self.forward_helper(
|
|
h,
|
|
h_lens,
|
|
y,
|
|
prune_range,
|
|
am_scale,
|
|
lm_scale,
|
|
reduction=reduction,
|
|
beam_size=beam_size,
|
|
use_double_scores=use_double_scores,
|
|
subsampling_factor=subsampling_factor,
|
|
)
|
|
|
|
# Chunks the outputs into 2 parts along batch axis and then stack them along a new axis.
|
|
simple_loss = torch.stack(
|
|
torch.chunk(simple_loss, self.num_channels, dim=0), dim=0
|
|
)
|
|
pruned_loss = torch.stack(
|
|
torch.chunk(pruned_loss, self.num_channels, dim=0), dim=0
|
|
)
|
|
ctc_loss = torch.stack(torch.chunk(ctc_loss, self.num_channels, dim=0), dim=0)
|
|
|
|
if return_masks:
|
|
return (simple_loss, pruned_loss, ctc_loss, x_masked, masks)
|
|
else:
|
|
return (simple_loss, pruned_loss, ctc_loss, x_masked)
|