mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
* Remove ReLU in attention * Adding diagnostics code... * Refactor/simplify ConformerEncoder * First version of rand-combine iterated-training-like idea. * Improvements to diagnostics (RE those with 1 dim * Add pelu to this good-performing setup.. * Small bug fixes/imports * Add baseline for the PeLU expt, keeping only the small normalization-related changes. * pelu_base->expscale, add 2xExpScale in subsampling, and in feedforward units. * Double learning rate of exp-scale units * Combine ExpScale and swish for memory reduction * Add import * Fix backprop bug * Fix bug in diagnostics * Increase scale on Scale from 4 to 20 * Increase scale from 20 to 50. * Fix duplicate Swish; replace norm+swish with swish+exp-scale in convolution module * Reduce scale from 50 to 20 * Add deriv-balancing code * Double the threshold in brelu; slightly increase max_factor. * Fix exp dir * Convert swish nonlinearities to ReLU * Replace relu with swish-squared. * Restore ConvolutionModule to state before changes; change all Swish,Swish(Swish) to SwishOffset. * Replace norm on input layer with scale of 0.1. * Extensions to diagnostics code * Update diagnostics * Add BasicNorm module * Replace most normalizations with scales (still have norm in conv) * Change exp dir * Replace norm in ConvolutionModule with a scaling factor. * use nonzero threshold in DerivBalancer * Add min-abs-value 0.2 * Fix dirname * Change min-abs threshold from 0.2 to 0.5 * Scale up pos_bias_u and pos_bias_v before use. * Reduce max_factor to 0.01 * Fix q*scaling logic * Change max_factor in DerivBalancer from 0.025 to 0.01; fix scaling code. * init 1st conv module to smaller variance * Change how scales are applied; fix residual bug * Reduce min_abs from 0.5 to 0.2 * Introduce in_scale=0.5 for SwishExpScale * Fix scale from 0.5 to 2.0 as I really intended.. * Set scaling on SwishExpScale * Add identity pre_norm_final for diagnostics. * Add learnable post-scale for mha * Fix self.post-scale-mha * Another rework, use scales on linear/conv * Change dir name * Reduce initial scaling of modules * Bug-fix RE bias * Cosmetic change * Reduce initial_scale. * Replace ExpScaleRelu with DoubleSwish() * DoubleSwish fix * Use learnable scales for joiner and decoder * Add max-abs-value constraint in DerivBalancer * Add max-abs-value * Change dir name * Remove ExpScale in feedforward layes. * Reduce max-abs limit from 1000 to 100; introduce 2 DerivBalancer modules in conv layer. * Make DoubleSwish more memory efficient * Reduce constraints from deriv-balancer in ConvModule. * Add warmup mode * Remove max-positive constraint in deriv-balancing; add second DerivBalancer in conv module. * Add some extra info to diagnostics * Add deriv-balancer at output of embedding. * Add more stats. * Make epsilon in BasicNorm learnable, optionally. * Draft of 0mean changes.. * Rework of initialization * Fix typo * Remove dead code * Modifying initialization from normal->uniform; add initial_scale when initializing * bug fix re sqrt * Remove xscale from pos_embedding * Remove some dead code. * Cosmetic changes/renaming things * Start adding some files.. * Add more files.. * update decode.py file type * Add remaining files in pruned_transducer_stateless2 * Fix diagnostics-getting code * Scale down pruned loss in warmup mode * Reduce warmup scale on pruned loss form 0.1 to 0.01. * Remove scale_speed, make swish deriv more efficient. * Cosmetic changes to swish * Double warm_step * Fix bug with import * Change initial std from 0.05 to 0.025. * Set also scale for embedding to 0.025. * Remove logging code that broke with newer Lhotse; fix bug with pruned_loss * Add norm+balancer to VggSubsampling * Incorporate changes from master into pruned_transducer_stateless2. * Add max-abs=6, debugged version * Change 0.025,0.05 to 0.01 in initializations * Fix balancer code * Whitespace fix * Reduce initial pruned_loss scale from 0.01 to 0.0 * Increase warm_step (and valid_interval) * Change max-abs from 6 to 10 * Change how warmup works. * Add changes from master to decode.py, train.py * Simplify the warmup code; max_abs 10->6 * Make warmup work by scaling layer contributions; leave residual layer-drop * Fix bug * Fix test mode with random layer dropout * Add random-number-setting function in dataloader * Fix/patch how fix_random_seed() is imported. * Reduce layer-drop prob * Reduce layer-drop prob after warmup to 1 in 100 * Change power of lr-schedule from -0.5 to -0.333 * Increase model_warm_step to 4k * Change max-keep-prob to 0.95 * Refactoring and simplifying conformer and frontend * Rework conformer, remove some code. * Reduce 1st conv channels from 64 to 32 * Add another convolutional layer * Fix padding bug * Remove dropout in output layer * Reduce speed of some components * Initial refactoring to remove unnecessary vocab_size * Fix RE identity * Bug-fix * Add final dropout to conformer * Remove some un-used code * Replace nn.Linear with ScaledLinear in simple joiner * Make 2 projections.. * Reduce initial_speed * Use initial_speed=0.5 * Reduce initial_speed further from 0.5 to 0.25 * Reduce initial_speed from 0.5 to 0.25 * Change how warmup is applied. * Bug fix to warmup_scale * Fix test-mode * Remove final dropout * Make layer dropout rate 0.075, was 0.1. * First draft of model rework * Various bug fixes * Change learning speed of simple_lm_proj * Revert transducer_stateless/ to state in upstream/master * Fix to joiner to allow different dims * Some cleanups * Make training more efficient, avoid redoing some projections. * Change how warm-step is set * First draft of new approach to learning rates + init * Some fixes.. * Change initialization to 0.25 * Fix type of parameter * Fix weight decay formula by adding 1/1-beta * Fix weight decay formula by adding 1/1-beta * Fix checkpoint-writing * Fix to reading scheudler from optim * Simplified optimizer, rework somet things.. * Reduce model_warm_step from 4k to 3k * Fix bug in lambda * Bug-fix RE sign of target_rms * Changing initial_speed from 0.25 to 01 * Change some defaults in LR-setting rule. * Remove initial_speed * Set new scheduler * Change exponential part of lrate to be epoch based * Fix bug * Set 2n rule.. * Implement 2o schedule * Make lrate rule more symmetric * Implement 2p version of learning rate schedule. * Refactor how learning rate is set. * Fix import * Modify init (#301) * update icefall/__init__.py to import more common functions. * update icefall/__init__.py * make imports style consistent. * exclude black check for icefall/__init__.py in pyproject.toml. * Minor fixes for logging (#296) * Minor fixes for logging * Minor fix * Fix dir names * Modify beam search to be efficient with current joienr * Fix adding learning rate to tensorboard * Fix docs in optim.py * Support mix precision training on the reworked model (#305) * Add mix precision support * Minor fixes * Minor fixes * Minor fixes * Tedlium3 pruned transducer stateless (#261) * update tedlium3-pruned-transducer-stateless-codes * update README.md * update README.md * add fast beam search for decoding * do a change for RESULTS.md * do a change for RESULTS.md * do a fix * do some changes for pruned RNN-T * Add mix precision support * Minor fixes * Minor fixes * Updating RESULTS.md; fix in beam_search.py * Fix rebase * Code style check for librispeech pruned transducer stateless2 (#308) * Update results for tedlium3 pruned RNN-T (#307) * Update README.md * Fix CI errors. (#310) * Add more results * Fix tensorboard log location * Add one more epoch of full expt * fix comments * Add results for mixed precision with max-duration 300 * Changes for pretrained.py (tedlium3 pruned RNN-T) (#311) * GigaSpeech recipe (#120) * initial commit * support download, data prep, and fbank * on-the-fly feature extraction by default * support BPE based lang * support HLG for BPE * small fix * small fix * chunked feature extraction by default * Compute features for GigaSpeech by splitting the manifest. * Fixes after review. * Split manifests into 2000 pieces. * set audio duration mismatch tolerance to 0.01 * small fix * add conformer training recipe * Add conformer.py without pre-commit checking * lazy loading and use SingleCutSampler * DynamicBucketingSampler * use KaldifeatFbank to compute fbank for musan * use pretrained language model and lexicon * use 3gram to decode, 4gram to rescore * Add decode.py * Update .flake8 * Delete compute_fbank_gigaspeech.py * Use BucketingSampler for valid and test dataloader * Update params in train.py * Use bpe_500 * update params in decode.py * Decrease num_paths while CUDA OOM * Added README * Update RESULTS * black * Decrease num_paths while CUDA OOM * Decode with post-processing * Update results * Remove lazy_load option * Use default `storage_type` * Keep the original tolerance * Use split-lazy * black * Update pretrained model Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com> * Add LG decoding (#277) * Add LG decoding * Add log weight pushing * Minor fixes * Support computing RNN-T loss with torchaudio (#316) * Update results for torchaudio RNN-T. (#322) * Fix some typos. (#329) * fix fp16 option in example usage (#332) * Support averaging models with weight tying. (#333) * Support specifying iteration number of checkpoints for decoding. (#336) See also #289 * Modified conformer with multi datasets (#312) * Copy files for editing. * Use librispeech + gigaspeech with modified conformer. * Support specifying number of workers for on-the-fly feature extraction. * Feature extraction code for GigaSpeech. * Combine XL splits lazily during training. * Fix warnings in decoding. * Add decoding code for GigaSpeech. * Fix decoding the gigaspeech dataset. We have to use the decoder/joiner networks for the GigaSpeech dataset. * Disable speed perturbe for XL subset. * Compute the Nbest oracle WER for RNN-T decoding. * Minor fixes. * Minor fixes. * Add results. * Update results. * Update CI. * Update results. * Fix style issues. * Update results. * Fix style issues. * Update results. (#340) * Update results. * Typo fixes. * Validate generated manifest files. (#338) * Validate generated manifest files. (#338) * Save batch to disk on OOM. (#343) * Save batch to disk on OOM. * minor fixes * Fixes after review. * Fix style issues. * Fix decoding for gigaspeech in the libri + giga setup. (#345) * Model average (#344) * First upload of model average codes. * minor fix * update decode file * update .flake8 * rename pruned_transducer_stateless3 to pruned_transducer_stateless4 * change epoch number counter starting from 1 instead of 0 * minor fix of pruned_transducer_stateless4/train.py * refactor the checkpoint.py * minor fix, update docs, and modify the epoch number to count from 1 in the pruned_transducer_stateless4/decode.py * update author info * add docs of the scaling in function average_checkpoints_with_averaged_model * Save batch to disk on exception. (#350) * Bug fix (#352) * Keep model_avg on cpu (#348) * keep model_avg on cpu * explicitly convert model_avg to cpu * minor fix * remove device convertion for model_avg * modify usage of the model device in train.py * change model.device to next(model.parameters()).device for decoding * assert params.start_epoch>0 * assert params.start_epoch>0, params.start_epoch * Do some changes for aishell/ASR/transducer stateless/export.py (#347) * do some changes for aishell/ASR/transducer_stateless/export.py * Support decoding with averaged model when using --iter (#353) * support decoding with averaged model when using --iter * minor fix * monir fix of copyright date * Stringify torch.__version__ before serializing it. (#354) * Run decode.py in GitHub actions. (#356) * Ignore padding frames during RNN-T decoding. (#358) * Ignore padding frames during RNN-T decoding. * Fix outdated decoding code. * Minor fixes. * Support --iter in export.py (#360) * GigaSpeech RNN-T experiments (#318) * Copy RNN-T recipe from librispeech * flake8 * flake8 * Update params * gigaspeech decode * black * Update results * syntax highlight * Update RESULTS.md * typo * Update decoding script for gigaspeech and remove duplicate files. (#361) * Validate that there are no OOV tokens in BPE-based lexicons. (#359) * Validate that there are no OOV tokens in BPE-based lexicons. * Typo fixes. * Decode gigaspeech in GitHub actions (#362) * Add CI for gigaspeech. * Update results for libri+giga multi dataset setup. (#363) * Update results for libri+giga multi dataset setup. * Update GigaSpeech reults (#364) * Update decode.py * Update export.py * Update results * Update README.md * Fix GitHub CI for decoding GigaSpeech dev/test datasets (#366) * modify .flake8 * minor fix * minor fix Co-authored-by: Daniel Povey <dpovey@gmail.com> Co-authored-by: Wei Kang <wkang@pku.org.cn> Co-authored-by: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com> Co-authored-by: Guo Liyong <guonwpu@qq.com> Co-authored-by: Wang, Guanbo <wgb14@outlook.com> Co-authored-by: whsqkaak <whsqkaak@naver.com> Co-authored-by: pehonnet <pe.honnet@gmail.com>
923 lines
34 KiB
Python
923 lines
34 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import math
|
|
import warnings
|
|
from typing import Optional, Tuple
|
|
|
|
import torch
|
|
from torch import Tensor, nn
|
|
from transformer import Transformer
|
|
|
|
from icefall.utils import make_pad_mask
|
|
|
|
|
|
class Conformer(Transformer):
|
|
"""
|
|
Args:
|
|
num_features (int): Number of input features
|
|
output_dim (int): Number of output dimension
|
|
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
|
d_model (int): attention dimension
|
|
nhead (int): number of head
|
|
dim_feedforward (int): feedforward dimention
|
|
num_encoder_layers (int): number of encoder layers
|
|
dropout (float): dropout rate
|
|
cnn_module_kernel (int): Kernel size of convolution module
|
|
normalize_before (bool): whether to use layer_norm before the first block.
|
|
vgg_frontend (bool): whether to use vgg frontend.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_features: int,
|
|
output_dim: int,
|
|
subsampling_factor: int = 4,
|
|
d_model: int = 256,
|
|
nhead: int = 4,
|
|
dim_feedforward: int = 2048,
|
|
num_encoder_layers: int = 12,
|
|
dropout: float = 0.1,
|
|
cnn_module_kernel: int = 31,
|
|
normalize_before: bool = True,
|
|
vgg_frontend: bool = False,
|
|
) -> None:
|
|
super(Conformer, self).__init__(
|
|
num_features=num_features,
|
|
output_dim=output_dim,
|
|
subsampling_factor=subsampling_factor,
|
|
d_model=d_model,
|
|
nhead=nhead,
|
|
dim_feedforward=dim_feedforward,
|
|
num_encoder_layers=num_encoder_layers,
|
|
dropout=dropout,
|
|
normalize_before=normalize_before,
|
|
vgg_frontend=vgg_frontend,
|
|
)
|
|
|
|
self.encoder_pos = RelPositionalEncoding(d_model, dropout)
|
|
|
|
encoder_layer = ConformerEncoderLayer(
|
|
d_model,
|
|
nhead,
|
|
dim_feedforward,
|
|
dropout,
|
|
cnn_module_kernel,
|
|
normalize_before,
|
|
)
|
|
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
|
self.normalize_before = normalize_before
|
|
if self.normalize_before:
|
|
self.after_norm = nn.LayerNorm(d_model)
|
|
else:
|
|
# Note: TorchScript detects that self.after_norm could be used inside forward()
|
|
# and throws an error without this change.
|
|
self.after_norm = identity
|
|
|
|
def forward(
|
|
self, x: torch.Tensor, x_lens: torch.Tensor
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Args:
|
|
x:
|
|
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
|
|
x_lens:
|
|
A tensor of shape (batch_size,) containing the number of frames in
|
|
`x` before padding.
|
|
Returns:
|
|
Return a tuple containing 2 tensors:
|
|
- logits, its shape is (batch_size, output_seq_len, output_dim)
|
|
- logit_lens, a tensor of shape (batch_size,) containing the number
|
|
of frames in `logits` before padding.
|
|
"""
|
|
x = self.encoder_embed(x)
|
|
x, pos_emb = self.encoder_pos(x)
|
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
|
|
|
# Caution: We assume the subsampling factor is 4!
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
lengths = ((x_lens - 1) // 2 - 1) // 2
|
|
assert x.size(0) == lengths.max().item()
|
|
mask = make_pad_mask(lengths)
|
|
|
|
x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, N, C)
|
|
|
|
if self.normalize_before:
|
|
x = self.after_norm(x)
|
|
|
|
logits = self.encoder_output_layer(x)
|
|
logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
|
|
|
return logits, lengths
|
|
|
|
|
|
class ConformerEncoderLayer(nn.Module):
|
|
"""
|
|
ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks.
|
|
See: "Conformer: Convolution-augmented Transformer for Speech Recognition"
|
|
|
|
Args:
|
|
d_model: the number of expected features in the input (required).
|
|
nhead: the number of heads in the multiheadattention models (required).
|
|
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
|
dropout: the dropout value (default=0.1).
|
|
cnn_module_kernel (int): Kernel size of convolution module.
|
|
normalize_before: whether to use layer_norm before the first block.
|
|
|
|
Examples::
|
|
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
|
>>> src = torch.rand(10, 32, 512)
|
|
>>> pos_emb = torch.rand(32, 19, 512)
|
|
>>> out = encoder_layer(src, pos_emb)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
d_model: int,
|
|
nhead: int,
|
|
dim_feedforward: int = 2048,
|
|
dropout: float = 0.1,
|
|
cnn_module_kernel: int = 31,
|
|
normalize_before: bool = True,
|
|
) -> None:
|
|
super(ConformerEncoderLayer, self).__init__()
|
|
self.self_attn = RelPositionMultiheadAttention(
|
|
d_model, nhead, dropout=0.0
|
|
)
|
|
|
|
self.feed_forward = nn.Sequential(
|
|
nn.Linear(d_model, dim_feedforward),
|
|
Swish(),
|
|
nn.Dropout(dropout),
|
|
nn.Linear(dim_feedforward, d_model),
|
|
)
|
|
|
|
self.feed_forward_macaron = nn.Sequential(
|
|
nn.Linear(d_model, dim_feedforward),
|
|
Swish(),
|
|
nn.Dropout(dropout),
|
|
nn.Linear(dim_feedforward, d_model),
|
|
)
|
|
|
|
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
|
|
|
|
self.norm_ff_macaron = nn.LayerNorm(
|
|
d_model
|
|
) # for the macaron style FNN module
|
|
self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
|
|
self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
|
|
|
|
self.ff_scale = 0.5
|
|
|
|
self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
|
|
self.norm_final = nn.LayerNorm(
|
|
d_model
|
|
) # for the final output of the block
|
|
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
self.normalize_before = normalize_before
|
|
|
|
def forward(
|
|
self,
|
|
src: Tensor,
|
|
pos_emb: Tensor,
|
|
src_mask: Optional[Tensor] = None,
|
|
src_key_padding_mask: Optional[Tensor] = None,
|
|
) -> Tensor:
|
|
"""
|
|
Pass the input through the encoder layer.
|
|
|
|
Args:
|
|
src: the sequence to the encoder layer (required).
|
|
pos_emb: Positional embedding tensor (required).
|
|
src_mask: the mask for the src sequence (optional).
|
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
|
|
|
Shape:
|
|
src: (S, N, E).
|
|
pos_emb: (N, 2*S-1, E)
|
|
src_mask: (S, S).
|
|
src_key_padding_mask: (N, S).
|
|
S is the source sequence length, N is the batch size, E is the feature number
|
|
"""
|
|
|
|
# macaron style feed forward module
|
|
residual = src
|
|
if self.normalize_before:
|
|
src = self.norm_ff_macaron(src)
|
|
src = residual + self.ff_scale * self.dropout(
|
|
self.feed_forward_macaron(src)
|
|
)
|
|
if not self.normalize_before:
|
|
src = self.norm_ff_macaron(src)
|
|
|
|
# multi-headed self-attention module
|
|
residual = src
|
|
if self.normalize_before:
|
|
src = self.norm_mha(src)
|
|
src_att = self.self_attn(
|
|
src,
|
|
src,
|
|
src,
|
|
pos_emb=pos_emb,
|
|
attn_mask=src_mask,
|
|
key_padding_mask=src_key_padding_mask,
|
|
)[0]
|
|
src = residual + self.dropout(src_att)
|
|
if not self.normalize_before:
|
|
src = self.norm_mha(src)
|
|
|
|
# convolution module
|
|
residual = src
|
|
if self.normalize_before:
|
|
src = self.norm_conv(src)
|
|
src = residual + self.dropout(self.conv_module(src))
|
|
if not self.normalize_before:
|
|
src = self.norm_conv(src)
|
|
|
|
# feed forward module
|
|
residual = src
|
|
if self.normalize_before:
|
|
src = self.norm_ff(src)
|
|
src = residual + self.ff_scale * self.dropout(self.feed_forward(src))
|
|
if not self.normalize_before:
|
|
src = self.norm_ff(src)
|
|
|
|
if self.normalize_before:
|
|
src = self.norm_final(src)
|
|
|
|
return src
|
|
|
|
|
|
class ConformerEncoder(nn.TransformerEncoder):
|
|
r"""ConformerEncoder is a stack of N encoder layers
|
|
|
|
Args:
|
|
encoder_layer: an instance of the ConformerEncoderLayer() class (required).
|
|
num_layers: the number of sub-encoder-layers in the encoder (required).
|
|
norm: the layer normalization component (optional).
|
|
|
|
Examples::
|
|
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
|
>>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6)
|
|
>>> src = torch.rand(10, 32, 512)
|
|
>>> pos_emb = torch.rand(32, 19, 512)
|
|
>>> out = conformer_encoder(src, pos_emb)
|
|
"""
|
|
|
|
def __init__(
|
|
self, encoder_layer: nn.Module, num_layers: int, norm: nn.Module = None
|
|
) -> None:
|
|
super(ConformerEncoder, self).__init__(
|
|
encoder_layer=encoder_layer, num_layers=num_layers, norm=norm
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
src: Tensor,
|
|
pos_emb: Tensor,
|
|
mask: Optional[Tensor] = None,
|
|
src_key_padding_mask: Optional[Tensor] = None,
|
|
) -> Tensor:
|
|
r"""Pass the input through the encoder layers in turn.
|
|
|
|
Args:
|
|
src: the sequence to the encoder (required).
|
|
pos_emb: Positional embedding tensor (required).
|
|
mask: the mask for the src sequence (optional).
|
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
|
|
|
Shape:
|
|
src: (S, N, E).
|
|
pos_emb: (N, 2*S-1, E)
|
|
mask: (S, S).
|
|
src_key_padding_mask: (N, S).
|
|
S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
|
|
|
|
"""
|
|
output = src
|
|
|
|
for mod in self.layers:
|
|
output = mod(
|
|
output,
|
|
pos_emb,
|
|
src_mask=mask,
|
|
src_key_padding_mask=src_key_padding_mask,
|
|
)
|
|
|
|
if self.norm is not None:
|
|
output = self.norm(output)
|
|
|
|
return output
|
|
|
|
|
|
class RelPositionalEncoding(torch.nn.Module):
|
|
"""Relative positional encoding module.
|
|
|
|
See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
|
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
|
|
|
|
Args:
|
|
d_model: Embedding dimension.
|
|
dropout_rate: Dropout rate.
|
|
max_len: Maximum input length.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self, d_model: int, dropout_rate: float, max_len: int = 5000
|
|
) -> None:
|
|
"""Construct an PositionalEncoding object."""
|
|
super(RelPositionalEncoding, self).__init__()
|
|
self.d_model = d_model
|
|
self.xscale = math.sqrt(self.d_model)
|
|
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
|
self.pe = None
|
|
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
|
|
|
def extend_pe(self, x: Tensor) -> None:
|
|
"""Reset the positional encodings."""
|
|
if self.pe is not None:
|
|
# self.pe contains both positive and negative parts
|
|
# the length of self.pe is 2 * input_len - 1
|
|
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
|
# Note: TorchScript doesn't implement operator== for torch.Device
|
|
if self.pe.dtype != x.dtype or str(self.pe.device) != str(
|
|
x.device
|
|
):
|
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
|
return
|
|
# Suppose `i` means to the position of query vecotr and `j` means the
|
|
# position of key vector. We use position relative positions when keys
|
|
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
|
pe_positive = torch.zeros(x.size(1), self.d_model)
|
|
pe_negative = torch.zeros(x.size(1), self.d_model)
|
|
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
|
div_term = torch.exp(
|
|
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
|
* -(math.log(10000.0) / self.d_model)
|
|
)
|
|
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
|
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
|
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
|
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
|
|
|
# Reserve the order of positive indices and concat both positive and
|
|
# negative indices. This is used to support the shifting trick
|
|
# as in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
|
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
|
pe_negative = pe_negative[1:].unsqueeze(0)
|
|
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
|
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
|
|
|
def forward(self, x: torch.Tensor) -> Tuple[Tensor, Tensor]:
|
|
"""Add positional encoding.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor (batch, time, `*`).
|
|
|
|
Returns:
|
|
torch.Tensor: Encoded tensor (batch, time, `*`).
|
|
torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
|
|
|
|
"""
|
|
self.extend_pe(x)
|
|
x = x * self.xscale
|
|
pos_emb = self.pe[
|
|
:,
|
|
self.pe.size(1) // 2
|
|
- x.size(1)
|
|
+ 1 : self.pe.size(1) // 2 # noqa E203
|
|
+ x.size(1),
|
|
]
|
|
return self.dropout(x), self.dropout(pos_emb)
|
|
|
|
|
|
class RelPositionMultiheadAttention(nn.Module):
|
|
r"""Multi-Head Attention layer with relative position encoding
|
|
|
|
See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
|
|
|
Args:
|
|
embed_dim: total dimension of the model.
|
|
num_heads: parallel attention heads.
|
|
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
|
|
|
Examples::
|
|
|
|
>>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
|
|
>>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
num_heads: int,
|
|
dropout: float = 0.0,
|
|
) -> None:
|
|
super(RelPositionMultiheadAttention, self).__init__()
|
|
self.embed_dim = embed_dim
|
|
self.num_heads = num_heads
|
|
self.dropout = dropout
|
|
self.head_dim = embed_dim // num_heads
|
|
assert (
|
|
self.head_dim * num_heads == self.embed_dim
|
|
), "embed_dim must be divisible by num_heads"
|
|
|
|
self.in_proj = nn.Linear(embed_dim, 3 * embed_dim, bias=True)
|
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
|
|
|
# linear transformation for positional encoding.
|
|
self.linear_pos = nn.Linear(embed_dim, embed_dim, bias=False)
|
|
# these two learnable bias are used in matrix c and matrix d
|
|
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
|
self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
|
self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
|
|
|
self._reset_parameters()
|
|
|
|
def _reset_parameters(self) -> None:
|
|
nn.init.xavier_uniform_(self.in_proj.weight)
|
|
nn.init.constant_(self.in_proj.bias, 0.0)
|
|
nn.init.constant_(self.out_proj.bias, 0.0)
|
|
|
|
nn.init.xavier_uniform_(self.pos_bias_u)
|
|
nn.init.xavier_uniform_(self.pos_bias_v)
|
|
|
|
def forward(
|
|
self,
|
|
query: Tensor,
|
|
key: Tensor,
|
|
value: Tensor,
|
|
pos_emb: Tensor,
|
|
key_padding_mask: Optional[Tensor] = None,
|
|
need_weights: bool = True,
|
|
attn_mask: Optional[Tensor] = None,
|
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
|
r"""
|
|
Args:
|
|
query, key, value: map a query and a set of key-value pairs to an output.
|
|
pos_emb: Positional embedding tensor
|
|
key_padding_mask: if provided, specified padding elements in the key will
|
|
be ignored by the attention. When given a binary mask and a value is True,
|
|
the corresponding value on the attention layer will be ignored. When given
|
|
a byte mask and a value is non-zero, the corresponding value on the attention
|
|
layer will be ignored
|
|
need_weights: output attn_output_weights.
|
|
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
|
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
|
|
|
Shape:
|
|
- Inputs:
|
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
|
the embedding dimension.
|
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
|
the embedding dimension.
|
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
|
the embedding dimension.
|
|
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
|
|
the embedding dimension.
|
|
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
|
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
|
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
|
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
|
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
|
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
|
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
|
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
|
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
|
is provided, it will be added to the attention weight.
|
|
|
|
- Outputs:
|
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
|
E is the embedding dimension.
|
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
|
L is the target sequence length, S is the source sequence length.
|
|
"""
|
|
return self.multi_head_attention_forward(
|
|
query,
|
|
key,
|
|
value,
|
|
pos_emb,
|
|
self.embed_dim,
|
|
self.num_heads,
|
|
self.in_proj.weight,
|
|
self.in_proj.bias,
|
|
self.dropout,
|
|
self.out_proj.weight,
|
|
self.out_proj.bias,
|
|
training=self.training,
|
|
key_padding_mask=key_padding_mask,
|
|
need_weights=need_weights,
|
|
attn_mask=attn_mask,
|
|
)
|
|
|
|
def rel_shift(self, x: Tensor) -> Tensor:
|
|
"""Compute relative positional encoding.
|
|
|
|
Args:
|
|
x: Input tensor (batch, head, time1, 2*time1-1).
|
|
time1 means the length of query vector.
|
|
|
|
Returns:
|
|
Tensor: tensor of shape (batch, head, time1, time2)
|
|
(note: time2 has the same value as time1, but it is for
|
|
the key, while time1 is for the query).
|
|
"""
|
|
(batch_size, num_heads, time1, n) = x.shape
|
|
assert n == 2 * time1 - 1
|
|
# Note: TorchScript requires explicit arg for stride()
|
|
batch_stride = x.stride(0)
|
|
head_stride = x.stride(1)
|
|
time1_stride = x.stride(2)
|
|
n_stride = x.stride(3)
|
|
return x.as_strided(
|
|
(batch_size, num_heads, time1, time1),
|
|
(batch_stride, head_stride, time1_stride - n_stride, n_stride),
|
|
storage_offset=n_stride * (time1 - 1),
|
|
)
|
|
|
|
def multi_head_attention_forward(
|
|
self,
|
|
query: Tensor,
|
|
key: Tensor,
|
|
value: Tensor,
|
|
pos_emb: Tensor,
|
|
embed_dim_to_check: int,
|
|
num_heads: int,
|
|
in_proj_weight: Tensor,
|
|
in_proj_bias: Tensor,
|
|
dropout_p: float,
|
|
out_proj_weight: Tensor,
|
|
out_proj_bias: Tensor,
|
|
training: bool = True,
|
|
key_padding_mask: Optional[Tensor] = None,
|
|
need_weights: bool = True,
|
|
attn_mask: Optional[Tensor] = None,
|
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
|
r"""
|
|
Args:
|
|
query, key, value: map a query and a set of key-value pairs to an output.
|
|
pos_emb: Positional embedding tensor
|
|
embed_dim_to_check: total dimension of the model.
|
|
num_heads: parallel attention heads.
|
|
in_proj_weight, in_proj_bias: input projection weight and bias.
|
|
dropout_p: probability of an element to be zeroed.
|
|
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
|
training: apply dropout if is ``True``.
|
|
key_padding_mask: if provided, specified padding elements in the key will
|
|
be ignored by the attention. This is an binary mask. When the value is True,
|
|
the corresponding value on the attention layer will be filled with -inf.
|
|
need_weights: output attn_output_weights.
|
|
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
|
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
|
|
|
Shape:
|
|
Inputs:
|
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
|
the embedding dimension.
|
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
|
the embedding dimension.
|
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
|
the embedding dimension.
|
|
- pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
|
|
length, N is the batch size, E is the embedding dimension.
|
|
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
|
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
|
will be unchanged. If a BoolTensor is provided, the positions with the
|
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
|
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
|
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
|
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
|
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
|
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
|
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
|
is provided, it will be added to the attention weight.
|
|
|
|
Outputs:
|
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
|
E is the embedding dimension.
|
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
|
L is the target sequence length, S is the source sequence length.
|
|
"""
|
|
|
|
tgt_len, bsz, embed_dim = query.size()
|
|
assert embed_dim == embed_dim_to_check
|
|
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
|
|
|
head_dim = embed_dim // num_heads
|
|
assert (
|
|
head_dim * num_heads == embed_dim
|
|
), "embed_dim must be divisible by num_heads"
|
|
scaling = float(head_dim) ** -0.5
|
|
|
|
if torch.equal(query, key) and torch.equal(key, value):
|
|
# self-attention
|
|
q, k, v = nn.functional.linear(
|
|
query, in_proj_weight, in_proj_bias
|
|
).chunk(3, dim=-1)
|
|
|
|
elif torch.equal(key, value):
|
|
# encoder-decoder attention
|
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
_b = in_proj_bias
|
|
_start = 0
|
|
_end = embed_dim
|
|
_w = in_proj_weight[_start:_end, :]
|
|
if _b is not None:
|
|
_b = _b[_start:_end]
|
|
q = nn.functional.linear(query, _w, _b)
|
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
_b = in_proj_bias
|
|
_start = embed_dim
|
|
_end = None
|
|
_w = in_proj_weight[_start:, :]
|
|
if _b is not None:
|
|
_b = _b[_start:]
|
|
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
|
|
|
|
else:
|
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
_b = in_proj_bias
|
|
_start = 0
|
|
_end = embed_dim
|
|
_w = in_proj_weight[_start:_end, :]
|
|
if _b is not None:
|
|
_b = _b[_start:_end]
|
|
q = nn.functional.linear(query, _w, _b)
|
|
|
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
_b = in_proj_bias
|
|
_start = embed_dim
|
|
_end = embed_dim * 2
|
|
_w = in_proj_weight[_start:_end, :]
|
|
if _b is not None:
|
|
_b = _b[_start:_end]
|
|
k = nn.functional.linear(key, _w, _b)
|
|
|
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
_b = in_proj_bias
|
|
_start = embed_dim * 2
|
|
_end = None
|
|
_w = in_proj_weight[_start:, :]
|
|
if _b is not None:
|
|
_b = _b[_start:]
|
|
v = nn.functional.linear(value, _w, _b)
|
|
|
|
if attn_mask is not None:
|
|
assert (
|
|
attn_mask.dtype == torch.float32
|
|
or attn_mask.dtype == torch.float64
|
|
or attn_mask.dtype == torch.float16
|
|
or attn_mask.dtype == torch.uint8
|
|
or attn_mask.dtype == torch.bool
|
|
), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
|
|
attn_mask.dtype
|
|
)
|
|
if attn_mask.dtype == torch.uint8:
|
|
warnings.warn(
|
|
"Byte tensor for attn_mask is deprecated. Use bool tensor instead."
|
|
)
|
|
attn_mask = attn_mask.to(torch.bool)
|
|
|
|
if attn_mask.dim() == 2:
|
|
attn_mask = attn_mask.unsqueeze(0)
|
|
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
|
raise RuntimeError(
|
|
"The size of the 2D attn_mask is not correct."
|
|
)
|
|
elif attn_mask.dim() == 3:
|
|
if list(attn_mask.size()) != [
|
|
bsz * num_heads,
|
|
query.size(0),
|
|
key.size(0),
|
|
]:
|
|
raise RuntimeError(
|
|
"The size of the 3D attn_mask is not correct."
|
|
)
|
|
else:
|
|
raise RuntimeError(
|
|
"attn_mask's dimension {} is not supported".format(
|
|
attn_mask.dim()
|
|
)
|
|
)
|
|
# attn_mask's dim is 3 now.
|
|
|
|
# convert ByteTensor key_padding_mask to bool
|
|
if (
|
|
key_padding_mask is not None
|
|
and key_padding_mask.dtype == torch.uint8
|
|
):
|
|
warnings.warn(
|
|
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
|
)
|
|
key_padding_mask = key_padding_mask.to(torch.bool)
|
|
|
|
q = q.contiguous().view(tgt_len, bsz, num_heads, head_dim)
|
|
k = k.contiguous().view(-1, bsz, num_heads, head_dim)
|
|
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
|
|
|
src_len = k.size(0)
|
|
|
|
if key_padding_mask is not None:
|
|
assert key_padding_mask.size(0) == bsz, "{} == {}".format(
|
|
key_padding_mask.size(0), bsz
|
|
)
|
|
assert key_padding_mask.size(1) == src_len, "{} == {}".format(
|
|
key_padding_mask.size(1), src_len
|
|
)
|
|
|
|
q = q.transpose(0, 1) # (batch, time1, head, d_k)
|
|
|
|
pos_emb_bsz = pos_emb.size(0)
|
|
assert pos_emb_bsz in (1, bsz) # actually it is 1
|
|
p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
|
|
p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k)
|
|
|
|
q_with_bias_u = (q + self.pos_bias_u).transpose(
|
|
1, 2
|
|
) # (batch, head, time1, d_k)
|
|
|
|
q_with_bias_v = (q + self.pos_bias_v).transpose(
|
|
1, 2
|
|
) # (batch, head, time1, d_k)
|
|
|
|
# compute attention score
|
|
# first compute matrix a and matrix c
|
|
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
|
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
|
matrix_ac = torch.matmul(
|
|
q_with_bias_u, k
|
|
) # (batch, head, time1, time2)
|
|
|
|
# compute matrix b and matrix d
|
|
matrix_bd = torch.matmul(
|
|
q_with_bias_v, p.transpose(-2, -1)
|
|
) # (batch, head, time1, 2*time1-1)
|
|
matrix_bd = self.rel_shift(matrix_bd)
|
|
|
|
attn_output_weights = (
|
|
matrix_ac + matrix_bd
|
|
) * scaling # (batch, head, time1, time2)
|
|
|
|
attn_output_weights = attn_output_weights.view(
|
|
bsz * num_heads, tgt_len, -1
|
|
)
|
|
|
|
assert list(attn_output_weights.size()) == [
|
|
bsz * num_heads,
|
|
tgt_len,
|
|
src_len,
|
|
]
|
|
|
|
if attn_mask is not None:
|
|
if attn_mask.dtype == torch.bool:
|
|
attn_output_weights.masked_fill_(attn_mask, float("-inf"))
|
|
else:
|
|
attn_output_weights += attn_mask
|
|
|
|
if key_padding_mask is not None:
|
|
attn_output_weights = attn_output_weights.view(
|
|
bsz, num_heads, tgt_len, src_len
|
|
)
|
|
attn_output_weights = attn_output_weights.masked_fill(
|
|
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
|
float("-inf"),
|
|
)
|
|
attn_output_weights = attn_output_weights.view(
|
|
bsz * num_heads, tgt_len, src_len
|
|
)
|
|
|
|
attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
|
|
attn_output_weights = nn.functional.dropout(
|
|
attn_output_weights, p=dropout_p, training=training
|
|
)
|
|
|
|
attn_output = torch.bmm(attn_output_weights, v)
|
|
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
|
attn_output = (
|
|
attn_output.transpose(0, 1)
|
|
.contiguous()
|
|
.view(tgt_len, bsz, embed_dim)
|
|
)
|
|
attn_output = nn.functional.linear(
|
|
attn_output, out_proj_weight, out_proj_bias
|
|
)
|
|
|
|
if need_weights:
|
|
# average attention weights over heads
|
|
attn_output_weights = attn_output_weights.view(
|
|
bsz, num_heads, tgt_len, src_len
|
|
)
|
|
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
|
else:
|
|
return attn_output, None
|
|
|
|
|
|
class ConvolutionModule(nn.Module):
|
|
"""ConvolutionModule in Conformer model.
|
|
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py
|
|
|
|
Args:
|
|
channels (int): The number of channels of conv layers.
|
|
kernel_size (int): Kernerl size of conv layers.
|
|
bias (bool): Whether to use bias in conv layers (default=True).
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self, channels: int, kernel_size: int, bias: bool = True
|
|
) -> None:
|
|
"""Construct an ConvolutionModule object."""
|
|
super(ConvolutionModule, self).__init__()
|
|
# kernerl_size should be a odd number for 'SAME' padding
|
|
assert (kernel_size - 1) % 2 == 0
|
|
|
|
self.pointwise_conv1 = nn.Conv1d(
|
|
channels,
|
|
2 * channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
bias=bias,
|
|
)
|
|
self.depthwise_conv = nn.Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
stride=1,
|
|
padding=(kernel_size - 1) // 2,
|
|
groups=channels,
|
|
bias=bias,
|
|
)
|
|
self.norm = nn.LayerNorm(channels)
|
|
self.pointwise_conv2 = nn.Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
bias=bias,
|
|
)
|
|
self.activation = Swish()
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
"""Compute convolution module.
|
|
|
|
Args:
|
|
x: Input tensor (#time, batch, channels).
|
|
|
|
Returns:
|
|
Tensor: Output tensor (#time, batch, channels).
|
|
|
|
"""
|
|
# exchange the temporal dimension and the feature dimension
|
|
x = x.permute(1, 2, 0) # (#batch, channels, time).
|
|
|
|
# GLU mechanism
|
|
x = self.pointwise_conv1(x) # (batch, 2*channels, time)
|
|
x = nn.functional.glu(x, dim=1) # (batch, channels, time)
|
|
|
|
# 1D Depthwise Conv
|
|
x = self.depthwise_conv(x)
|
|
# x is (batch, channels, time)
|
|
x = x.permute(0, 2, 1)
|
|
x = self.norm(x)
|
|
x = x.permute(0, 2, 1)
|
|
|
|
x = self.activation(x)
|
|
|
|
x = self.pointwise_conv2(x) # (batch, channel, time)
|
|
|
|
return x.permute(2, 0, 1)
|
|
|
|
|
|
class Swish(torch.nn.Module):
|
|
"""Construct an Swish object."""
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
"""Return Swich activation function."""
|
|
return x * torch.sigmoid(x)
|
|
|
|
|
|
def identity(x):
|
|
return x
|