icefall/egs/tedlium3/ASR/prepare.sh
2023-10-25 00:03:33 +08:00

213 lines
5.8 KiB
Bash
Executable File

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
stage=0
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/tedlium3
# You can find data, doc, legacy, LM, etc, inside it.
# You can download them from https://www.openslr.org/51
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
5000
2000
1000
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/tedlium3,
# you can create a symlink
#
# ln -sfv /path/to/tedlium3 $dl_dir/tedlium3
#
if [ ! -d $dl_dir/tedlium3 ]; then
lhotse download tedlium $dl_dir
mv $dl_dir/TEDLIUM_release-3 $dl_dir/tedlium3
fi
# Download big and small 4 gram lanuage models
if [ ! -d $dl_dir/lm ]; then
wget --continue http://kaldi-asr.org/models/5/4gram_small.arpa.gz -P $dl_dir/lm
wget --continue http://kaldi-asr.org/models/5/4gram_big.arpa.gz -P $dl_dir/lm
gzip -d $dl_dir/lm/4gram_small.arpa.gz $dl_dir/lm/4gram_big.arpa.gz
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
#ln -sfv /path/to/musan $dl_dir/musan
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare tedlium3 manifests"
if [ ! -f data/manifests/.tedlium3.done ]; then
# We assume that you have downloaded the tedlium3 corpus
# to $dl_dir/tedlium3
mkdir -p data/manifests
lhotse prepare tedlium $dl_dir/tedlium3 data/manifests
touch data/manifests/.tedlium3.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifests"
# We assume that you have downloaded the musan corpus
# to data/musan
if [ ! -e data/manifests/.musan.done ]; then
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for tedlium3"
if [ ! -e data/fbank/.tedlium3.done ]; then
mkdir -p data/fbank
python3 ./local/compute_fbank_tedlium.py
gunzip -c data/fbank/tedlium_cuts_train.jsonl.gz | shuf | \
gzip -c > data/fbank/tedlium_cuts_train-shuf.jsonl.gz
mv data/fbank/tedlium_cuts_train-shuf.jsonl.gz \
data/fbank/tedlium_cuts_train.jsonl.gz
touch data/fbank/.tedlium3.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
if [ ! -e data/fbank/.musan.done ]; then
mkdir -p data/fbank
python3 ./local/compute_fbank_musan.py
touch data/fbank/.musan.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare BPE train data and set of words"
lang_dir=data/lang
mkdir -p $lang_dir
if [ ! -f $lang_dir/train.txt ]; then
gunzip -c $dl_dir/tedlium3/LM/*.en.gz | sed 's: <\/s>::g' > $lang_dir/train_orig.txt
./local/prepare_transcripts.py \
--input-text-path $lang_dir/train_orig.txt \
--output-text-path $lang_dir/train.txt
fi
if [ ! -f $lang_dir/words.txt ]; then
awk '{print $1}' $dl_dir/tedlium3/TEDLIUM.152k.dic |
sed 's:([0-9])::g' | sort | uniq > $lang_dir/words_orig.txt
./local/prepare_words.py --lang-dir $lang_dir
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
# We reuse words.txt from phone based lexicon
# so that the two can share G.pt later.
cp data/lang/words.txt $lang_dir
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript data/lang/train.txt
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir --oov "<unk>"
fi
done
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Prepare G"
# We assume you have installed kaldilm, if not, please install
# it using: pip install kaldilm
mkdir -p data/lm
if [ ! -f data/lm/G_4_gram_small.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table="data/lang/words.txt" \
--disambig-symbol='#0' \
--max-order=4 \
--max-arpa-warnings=-1 \
$dl_dir/lm/4gram_small.arpa > data/lm/G_4_gram_small.fst.txt
fi
if [ ! -f data/lm/G_4_gram_big.fst.txt ]; then
# It is used for LM rescoring
python3 -m kaldilm \
--read-symbol-table="data/lang/words.txt" \
--disambig-symbol='#0' \
--max-order=4 \
--max-arpa-warnings=-1 \
$dl_dir/lm/4gram_big.arpa > data/lm/G_4_gram_big.fst.txt
fi
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Compile HLG"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
if [ ! -f $lang_dir/HLG.pt ]; then
./local/compile_hlg.py \
--lang-dir $lang_dir \
--lm G_4_gram_small
fi
done
fi