mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-10 18:42:19 +00:00
353 lines
11 KiB
Python
Executable File
353 lines
11 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Copyright 2024 The Chinese University of HK (Author: Zengrui Jin)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
This script performs model inference on test set.
|
|
|
|
Usage:
|
|
./codec/infer.py \
|
|
--epoch 300 \
|
|
--exp-dir ./codec/exp \
|
|
--max-duration 500
|
|
"""
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from pathlib import Path
|
|
from statistics import mean
|
|
from typing import List, Tuple
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torchaudio
|
|
from codec_datamodule import LibriTTSCodecDataModule
|
|
from pesq import pesq
|
|
from pystoi import stoi
|
|
from scipy import signal
|
|
from torch import nn
|
|
from train import get_model, get_params
|
|
|
|
from icefall.checkpoint import load_checkpoint
|
|
from icefall.utils import AttributeDict, setup_logger
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=1000,
|
|
help="""It specifies the checkpoint to use for decoding.
|
|
Note: Epoch counts from 1.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="encodec/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--target-bw",
|
|
type=float,
|
|
default=24,
|
|
help="The target bandwidth for the generator",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
# implementation from https://github.com/yangdongchao/AcademiCodec/blob/master/academicodec/models/encodec/test.py
|
|
def remove_encodec_weight_norm(model) -> None:
|
|
from modules import SConv1d
|
|
from modules.seanet import SConvTranspose1d, SEANetResnetBlock
|
|
from torch.nn.utils import remove_weight_norm
|
|
|
|
encoder = model.encoder.model
|
|
for key in encoder._modules:
|
|
if isinstance(encoder._modules[key], SEANetResnetBlock):
|
|
remove_weight_norm(encoder._modules[key].shortcut.conv.conv)
|
|
block_modules = encoder._modules[key].block._modules
|
|
for skey in block_modules:
|
|
if isinstance(block_modules[skey], SConv1d):
|
|
remove_weight_norm(block_modules[skey].conv.conv)
|
|
elif isinstance(encoder._modules[key], SConv1d):
|
|
remove_weight_norm(encoder._modules[key].conv.conv)
|
|
|
|
decoder = model.decoder.model
|
|
for key in decoder._modules:
|
|
if isinstance(decoder._modules[key], SEANetResnetBlock):
|
|
remove_weight_norm(decoder._modules[key].shortcut.conv.conv)
|
|
block_modules = decoder._modules[key].block._modules
|
|
for skey in block_modules:
|
|
if isinstance(block_modules[skey], SConv1d):
|
|
remove_weight_norm(block_modules[skey].conv.conv)
|
|
elif isinstance(decoder._modules[key], SConvTranspose1d):
|
|
remove_weight_norm(decoder._modules[key].convtr.convtr)
|
|
elif isinstance(decoder._modules[key], SConv1d):
|
|
remove_weight_norm(decoder._modules[key].conv.conv)
|
|
|
|
|
|
def compute_pesq(ref_wav: np.ndarray, gen_wav: np.ndarray) -> float:
|
|
"""Compute PESQ score between reference and generated audio."""
|
|
DEFAULT_SAMPLING_RATE = 16000
|
|
ref = signal.resample(ref_wav, DEFAULT_SAMPLING_RATE)
|
|
deg = signal.resample(gen_wav, DEFAULT_SAMPLING_RATE)
|
|
return pesq(fs=DEFAULT_SAMPLING_RATE, ref=ref, deg=deg, mode="wb")
|
|
|
|
|
|
def compute_stoi(ref_wav: np.ndarray, gen_wav: np.ndarray, sampling_rate: int) -> float:
|
|
"""Compute STOI score between reference and generated audio."""
|
|
return stoi(x=ref_wav, y=gen_wav, fs_sig=sampling_rate, extended=False)
|
|
|
|
|
|
def infer_dataset(
|
|
dl: torch.utils.data.DataLoader,
|
|
subset: str,
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
) -> Tuple[float, float]:
|
|
"""Decode dataset.
|
|
The ground-truth and generated audio pairs will be saved to `params.save_wav_dir`.
|
|
|
|
Args:
|
|
dl:
|
|
PyTorch's dataloader containing the dataset to decode.
|
|
subset:
|
|
The name of the subset.
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The neural model.
|
|
|
|
Returns:
|
|
The average PESQ and STOI scores.
|
|
"""
|
|
|
|
# Background worker save audios to disk.
|
|
def _save_worker(
|
|
subset: str,
|
|
batch_size: int,
|
|
cut_ids: List[str],
|
|
audio: torch.Tensor,
|
|
audio_pred: torch.Tensor,
|
|
audio_lens: List[int],
|
|
):
|
|
for i in range(batch_size):
|
|
torchaudio.save(
|
|
str(params.save_wav_dir / subset / f"{cut_ids[i]}_gt.wav"),
|
|
audio[i : i + 1, : audio_lens[i]],
|
|
sample_rate=params.sampling_rate,
|
|
)
|
|
torchaudio.save(
|
|
str(params.save_wav_dir / subset / f"{cut_ids[i]}_recon.wav"),
|
|
audio_pred[i : i + 1, : audio_lens[i]],
|
|
sample_rate=params.sampling_rate,
|
|
)
|
|
|
|
device = next(model.parameters()).device
|
|
num_cuts = 0
|
|
log_interval = 5
|
|
|
|
pesq_wb_scores = []
|
|
stoi_scores = []
|
|
|
|
try:
|
|
num_batches = len(dl)
|
|
except TypeError:
|
|
num_batches = "?"
|
|
|
|
futures = []
|
|
with ThreadPoolExecutor(max_workers=1) as executor:
|
|
for batch_idx, batch in enumerate(dl):
|
|
batch_size = len(batch["audio"])
|
|
|
|
audios = batch["audio"]
|
|
audio_lens = batch["audio_lens"].tolist()
|
|
cut_ids = [cut.id for cut in batch["cut"]]
|
|
|
|
codes, audio_hats = model.inference(
|
|
audios.to(device), target_bw=params.target_bw
|
|
)
|
|
audio_hats = audio_hats.squeeze(1).cpu()
|
|
|
|
for cut_id, audio, audio_hat, audio_len in zip(
|
|
cut_ids, audios, audio_hats, audio_lens
|
|
):
|
|
try:
|
|
pesq_wb = compute_pesq(
|
|
ref_wav=audio[:audio_len].numpy(),
|
|
gen_wav=audio_hat[:audio_len].numpy(),
|
|
)
|
|
pesq_wb_scores.append(pesq_wb)
|
|
except Exception as e:
|
|
logging.error(f"Error while computing PESQ for cut {cut_id}: {e}")
|
|
|
|
stoi_score = compute_stoi(
|
|
ref_wav=audio[:audio_len].numpy(),
|
|
gen_wav=audio_hat[:audio_len].numpy(),
|
|
sampling_rate=params.sampling_rate,
|
|
)
|
|
stoi_scores.append(stoi_score)
|
|
|
|
futures.append(
|
|
executor.submit(
|
|
_save_worker,
|
|
subset,
|
|
batch_size,
|
|
cut_ids,
|
|
audios,
|
|
audio_hats,
|
|
audio_lens,
|
|
)
|
|
)
|
|
|
|
num_cuts += batch_size
|
|
|
|
if batch_idx % log_interval == 0:
|
|
batch_str = f"{batch_idx}/{num_batches}"
|
|
|
|
logging.info(
|
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
|
)
|
|
# return results
|
|
for f in futures:
|
|
f.result()
|
|
return mean(pesq_wb_scores), mean(stoi_scores)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
LibriTTSCodecDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
params.suffix = f"epoch-{params.epoch}"
|
|
|
|
params.res_dir = params.exp_dir / "infer" / params.suffix
|
|
params.save_wav_dir = params.res_dir / "wav"
|
|
params.save_wav_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
setup_logger(f"{params.res_dir}/log-infer-{params.suffix}")
|
|
logging.info("Infer started")
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
# we need cut ids to display results of both constructed and ground-truth audio
|
|
args.return_cuts = True
|
|
libritts = LibriTTSCodecDataModule(args)
|
|
|
|
logging.info(f"Device: {device}")
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_model(params)
|
|
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
remove_encodec_weight_norm(model)
|
|
|
|
model.to(device)
|
|
model.eval()
|
|
|
|
encoder = model.encoder
|
|
decoder = model.decoder
|
|
quantizer = model.quantizer
|
|
multi_scale_discriminator = model.multi_scale_discriminator
|
|
multi_period_discriminator = model.multi_period_discriminator
|
|
multi_scale_stft_discriminator = model.multi_scale_stft_discriminator
|
|
|
|
num_param_e = sum([p.numel() for p in encoder.parameters()])
|
|
logging.info(f"Number of parameters in encoder: {num_param_e}")
|
|
num_param_d = sum([p.numel() for p in decoder.parameters()])
|
|
logging.info(f"Number of parameters in decoder: {num_param_d}")
|
|
num_param_q = sum([p.numel() for p in quantizer.parameters()])
|
|
logging.info(f"Number of parameters in quantizer: {num_param_q}")
|
|
num_param_ds = (
|
|
sum([p.numel() for p in multi_scale_discriminator.parameters()])
|
|
if multi_scale_discriminator is not None
|
|
else 0
|
|
)
|
|
logging.info(f"Number of parameters in multi_scale_discriminator: {num_param_ds}")
|
|
num_param_dp = (
|
|
sum([p.numel() for p in multi_period_discriminator.parameters()])
|
|
if multi_period_discriminator is not None
|
|
else 0
|
|
)
|
|
logging.info(f"Number of parameters in multi_period_discriminator: {num_param_dp}")
|
|
num_param_dstft = sum(
|
|
[p.numel() for p in multi_scale_stft_discriminator.parameters()]
|
|
)
|
|
logging.info(
|
|
f"Number of parameters in multi_scale_stft_discriminator: {num_param_dstft}"
|
|
)
|
|
logging.info(
|
|
f"Total number of parameters: {num_param_e + num_param_d + num_param_q + num_param_ds + num_param_dp + num_param_dstft}"
|
|
)
|
|
|
|
test_clean_cuts = libritts.test_clean_cuts()
|
|
test_clean = libritts.test_dataloaders(test_clean_cuts)
|
|
|
|
test_other_cuts = libritts.test_other_cuts()
|
|
test_other = libritts.test_dataloaders(test_other_cuts)
|
|
|
|
dev_clean_cuts = libritts.dev_clean_cuts()
|
|
dev_clean = libritts.valid_dataloaders(dev_clean_cuts)
|
|
|
|
dev_other_cuts = libritts.dev_other_cuts()
|
|
dev_other = libritts.valid_dataloaders(dev_other_cuts)
|
|
|
|
infer_sets = {
|
|
"test-clean": test_clean,
|
|
"test-other": test_other,
|
|
"dev-clean": dev_clean,
|
|
"dev-other": dev_other,
|
|
}
|
|
|
|
for subset, dl in infer_sets.items():
|
|
save_wav_dir = params.res_dir / "wav" / subset
|
|
save_wav_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
logging.info(f"Processing {subset} set, saving to {save_wav_dir}")
|
|
|
|
pesq_wb, stoi = infer_dataset(
|
|
dl=dl,
|
|
subset=subset,
|
|
params=params,
|
|
model=model,
|
|
)
|
|
logging.info(f"{subset}: PESQ-WB: {pesq_wb:.4f}, STOI: {stoi:.4f}")
|
|
|
|
logging.info(f"Wav files are saved to {params.save_wav_dir}")
|
|
logging.info("Done!")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|