mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
509 lines
17 KiB
Bash
Executable File
509 lines
17 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
set -eou pipefail
|
|
|
|
nj=16
|
|
stage=-1
|
|
stop_stage=100
|
|
|
|
# Split data/${lang}set to this number of pieces
|
|
# This is to avoid OOM during feature extraction.
|
|
num_splits=1000
|
|
|
|
# In case you want to use all validated data
|
|
use_validated=false
|
|
|
|
# In case you are willing to take the risk and use invalidated data
|
|
use_invalidated=false
|
|
|
|
# We assume dl_dir (download dir) contains the following
|
|
# directories and files. If not, they will be downloaded
|
|
# by this script automatically.
|
|
#
|
|
# - $dl_dir/$release/$lang
|
|
# This directory contains the following files downloaded from
|
|
# https://mozilla-common-voice-datasets.s3.dualstack.us-west-2.amazonaws.com/${release}/${release}-${lang}.tar.gz
|
|
#
|
|
# - clips
|
|
# - dev.tsv
|
|
# - invalidated.tsv
|
|
# - other.tsv
|
|
# - reported.tsv
|
|
# - test.tsv
|
|
# - train.tsv
|
|
# - validated.tsv
|
|
#
|
|
# - $dl_dir/musan
|
|
# This directory contains the following directories downloaded from
|
|
# http://www.openslr.org/17/
|
|
#
|
|
# - music
|
|
# - noise
|
|
# - speech
|
|
|
|
dl_dir=$PWD/download
|
|
release=cv-corpus-12.0-2022-12-07
|
|
lang=fr
|
|
perturb_speed=false
|
|
|
|
. shared/parse_options.sh || exit 1
|
|
|
|
# vocab size for sentence piece models.
|
|
# It will generate data/${lang}/lang_bpe_xxx,
|
|
# data/${lang}/lang_bpe_yyy if the array contains xxx, yyy
|
|
vocab_sizes=(
|
|
# 5000
|
|
# 2000
|
|
# 1000
|
|
500
|
|
)
|
|
|
|
# All files generated by this script are saved in "data/${lang}".
|
|
# You can safely remove "data/${lang}" and rerun this script to regenerate it.
|
|
mkdir -p data/${lang}
|
|
|
|
log() {
|
|
# This function is from espnet
|
|
local fname=${BASH_SOURCE[1]##*/}
|
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
}
|
|
|
|
log "dl_dir: $dl_dir"
|
|
|
|
if ! command -v ffmpeg &> /dev/null; then
|
|
echo "This dataset requires ffmpeg"
|
|
echo "Please install ffmpeg first"
|
|
echo ""
|
|
echo " sudo apt-get install ffmpeg"
|
|
exit 1
|
|
fi
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
log "Stage 0: Download data"
|
|
|
|
# If you have pre-downloaded it to /path/to/$release,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/$release $dl_dir/$release
|
|
#
|
|
if [ ! -d $dl_dir/$release/$lang/clips ]; then
|
|
lhotse download commonvoice --languages $lang --release $release $dl_dir
|
|
fi
|
|
|
|
# If you have pre-downloaded it to /path/to/musan,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/musan $dl_dir/
|
|
#
|
|
if [ ! -d $dl_dir/musan ]; then
|
|
lhotse download musan $dl_dir
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
log "Stage 1: Prepare CommonVoice manifest"
|
|
# We assume that you have downloaded the CommonVoice corpus
|
|
# to $dl_dir/$release
|
|
mkdir -p data/${lang}/manifests
|
|
if [ ! -e data/${lang}/manifests/.cv-${lang}.done ]; then
|
|
lhotse prepare commonvoice --language $lang -j $nj $dl_dir/$release data/${lang}/manifests
|
|
|
|
if [ $use_validated = true ] && [ ! -f data/${lang}/manifests/.cv-${lang}.validated.done ]; then
|
|
log "Also prepare validated data"
|
|
lhotse prepare commonvoice \
|
|
--split validated \
|
|
--language $lang \
|
|
-j $nj $dl_dir/$release data/${lang}/manifests
|
|
touch data/${lang}/manifests/.cv-${lang}.validated.done
|
|
fi
|
|
|
|
if [ $use_invalidated = true ] && [ ! -f data/${lang}/manifests/.cv-${lang}.invalidated.done ]; then
|
|
log "Also prepare invalidated data"
|
|
lhotse prepare commonvoice \
|
|
--split invalidated \
|
|
--language $lang \
|
|
-j $nj $dl_dir/$release data/${lang}/manifests
|
|
touch data/${lang}/manifests/.cv-${lang}.invalidated.done
|
|
fi
|
|
|
|
touch data/${lang}/manifests/.cv-${lang}.done
|
|
fi
|
|
|
|
# Note: in Linux, you can install jq with the following command:
|
|
# 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
|
|
# 2. chmod +x ./jq
|
|
# 3. cp jq /usr/bin
|
|
if [ $use_validated = true ]; then
|
|
log "Getting cut ids from dev/test sets for later use"
|
|
gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_test.jsonl.gz \
|
|
| jq '.id' | sed 's/"//g' > data/${lang}/manifests/cv-${lang}_test_ids
|
|
|
|
gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_dev.jsonl.gz \
|
|
| jq '.id' | sed 's/"//g' > data/${lang}/manifests/cv-${lang}_dev_ids
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 2: Prepare musan manifest"
|
|
# We assume that you have downloaded the musan corpus
|
|
# to data/musan
|
|
mkdir -p data/manifests
|
|
if [ ! -e data/manifests/.musan.done ]; then
|
|
lhotse prepare musan $dl_dir/musan data/manifests
|
|
touch data/manifests/.musan.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
log "Stage 3: Preprocess CommonVoice manifest"
|
|
if [ ! -e data/${lang}/fbank/.preprocess_complete ]; then
|
|
./local/preprocess_commonvoice.py --language $lang
|
|
touch data/${lang}/fbank/.preprocess_complete
|
|
fi
|
|
|
|
if [ $use_validated = true ] && [ ! -f data/${lang}/fbank/.validated.preprocess_complete ]; then
|
|
log "Also preprocess validated data"
|
|
./local/preprocess_commonvoice.py --language $lang --dataset validated
|
|
touch data/${lang}/fbank/.validated.preprocess_complete
|
|
fi
|
|
|
|
if [ $use_invalidated = true ] && [ ! -f data/${lang}/fbank/.invalidated.preprocess_complete ]; then
|
|
log "Also preprocess invalidated data"
|
|
./local/preprocess_commonvoice.py --language $lang --dataset invalidated
|
|
touch data/${lang}/fbank/.invalidated.preprocess_complete
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
log "Stage 4: Compute fbank for dev and test subsets of CommonVoice"
|
|
mkdir -p data/${lang}/fbank
|
|
if [ ! -e data/${lang}/fbank/.cv-${lang}_dev_test.done ]; then
|
|
./local/compute_fbank_commonvoice_dev_test.py --language $lang
|
|
touch data/${lang}/fbank/.cv-${lang}_dev_test.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
log "Stage 5: Split train subset into ${num_splits} pieces"
|
|
split_dir=data/${lang}/fbank/cv-${lang}_train_split_${num_splits}
|
|
if [ ! -e $split_dir/.cv-${lang}_train_split.done ]; then
|
|
lhotse split $num_splits ./data/${lang}/fbank/cv-${lang}_cuts_train_raw.jsonl.gz $split_dir
|
|
touch $split_dir/.cv-${lang}_train_split.done
|
|
fi
|
|
|
|
split_dir=data/${lang}/fbank/cv-${lang}_validated_split_${num_splits}
|
|
if [ $use_validated = true ] && [ ! -f $split_dir/.cv-${lang}_validated.done ]; then
|
|
log "Also split validated data"
|
|
lhotse split $num_splits ./data/${lang}/fbank/cv-${lang}_cuts_validated_raw.jsonl.gz $split_dir
|
|
touch $split_dir/.cv-${lang}_validated.done
|
|
fi
|
|
|
|
split_dir=data/${lang}/fbank/cv-${lang}_invalidated_split_${num_splits}
|
|
if [ $use_invalidated = true ] && [ ! -f $split_dir/.cv-${lang}_invalidated.done ]; then
|
|
log "Also split invalidated data"
|
|
lhotse split $num_splits ./data/${lang}/fbank/cv-${lang}_cuts_invalidated_raw.jsonl.gz $split_dir
|
|
touch $split_dir/.cv-${lang}_invalidated.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|
log "Stage 6: Compute features for train subset of CommonVoice"
|
|
if [ ! -e data/${lang}/fbank/.cv-${lang}_train.done ]; then
|
|
./local/compute_fbank_commonvoice_splits.py \
|
|
--num-workers $nj \
|
|
--batch-duration 200 \
|
|
--start 0 \
|
|
--num-splits $num_splits \
|
|
--language $lang \
|
|
--perturb-speed $perturb_speed
|
|
touch data/${lang}/fbank/.cv-${lang}_train.done
|
|
fi
|
|
|
|
if [ $use_validated = true ] && [ ! -f data/${lang}/fbank/.cv-${lang}_validated.done ]; then
|
|
log "Also compute features for validated data"
|
|
./local/compute_fbank_commonvoice_splits.py \
|
|
--subset validated \
|
|
--num-workers $nj \
|
|
--batch-duration 200 \
|
|
--start 0 \
|
|
--num-splits $num_splits \
|
|
--language $lang \
|
|
--perturb-speed $perturb_speed
|
|
touch data/${lang}/fbank/.cv-${lang}_validated.done
|
|
fi
|
|
|
|
if [ $use_invalidated = true ] && [ ! -f data/${lang}/fbank/.cv-${lang}_invalidated.done ]; then
|
|
log "Also compute features for invalidated data"
|
|
./local/compute_fbank_commonvoice_splits.py \
|
|
--subset invalidated \
|
|
--num-workers $nj \
|
|
--batch-duration 200 \
|
|
--start 0 \
|
|
--num-splits $num_splits \
|
|
--language $lang \
|
|
--perturb-speed $perturb_speed
|
|
touch data/${lang}/fbank/.cv-${lang}_invalidated.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
|
log "Stage 7: Combine features for train"
|
|
if [ ! -f data/${lang}/fbank/cv-${lang}_cuts_train.jsonl.gz ]; then
|
|
pieces=$(find data/${lang}/fbank/cv-${lang}_train_split_${num_splits} -name "cv-${lang}_cuts_train.*.jsonl.gz")
|
|
lhotse combine $pieces data/${lang}/fbank/cv-${lang}_cuts_train.jsonl.gz
|
|
fi
|
|
|
|
if [ $use_validated = true ] && [ -f data/${lang}/fbank/.cv-${lang}_validated.done ]; then
|
|
log "Also combine features for validated data"
|
|
pieces=$(find data/${lang}/fbank/cv-${lang}_validated_split_${num_splits} -name "cv-${lang}_cuts_validated.*.jsonl.gz")
|
|
lhotse combine $pieces data/${lang}/fbank/cv-${lang}_cuts_validated.jsonl.gz
|
|
touch data/${lang}/fbank/.cv-${lang}_validated.done
|
|
fi
|
|
|
|
if [ $use_invalidated = true ] && [ -f data/${lang}/fbank/.cv-${lang}_invalidated.done ]; then
|
|
log "Also combine features for invalidated data"
|
|
pieces=$(find data/${lang}/fbank/cv-${lang}_invalidated_split_${num_splits} -name "cv-${lang}_cuts_invalidated.*.jsonl.gz")
|
|
lhotse combine $pieces data/${lang}/fbank/cv-${lang}_cuts_invalidated.jsonl.gz
|
|
touch data/${lang}/fbank/.cv-${lang}_invalidated.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
|
log "Stage 8: Compute fbank for musan"
|
|
mkdir -p data/fbank
|
|
if [ ! -e data/fbank/.musan.done ]; then
|
|
./local/compute_fbank_musan.py
|
|
touch data/fbank/.musan.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
|
if [ $lang == "yue" ] || [ $lang == "zh-TW" ] || [ $lang == "zh-CN" ] || [ $lang == "zh-HK" ]; then
|
|
log "Stage 9: Prepare Char based lang"
|
|
lang_dir=data/${lang}/lang_char/
|
|
mkdir -p $lang_dir
|
|
|
|
if [ ! -f $lang_dir/transcript_words.txt ]; then
|
|
log "Generate data for lang preparation"
|
|
|
|
# Prepare text.
|
|
# Note: in Linux, you can install jq with the following command:
|
|
# 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
|
|
# 2. chmod +x ./jq
|
|
# 3. cp jq /usr/bin
|
|
if [ $use_validated = true ]; then
|
|
gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_validated.jsonl.gz \
|
|
| jq '.text' | sed 's/"//g' >> $lang_dir/text
|
|
else
|
|
gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_train.jsonl.gz \
|
|
| jq '.text' | sed 's/"//g' > $lang_dir/text
|
|
fi
|
|
|
|
if [ $use_invalidated = true ]; then
|
|
gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_invalidated.jsonl.gz \
|
|
| jq '.text' | sed 's/"//g' >> $lang_dir/text
|
|
fi
|
|
|
|
if [ $lang == "yue" ] || [ $lang == "zh-HK" ]; then
|
|
# Get words.txt and words_no_ids.txt
|
|
./local/word_segment_yue.py \
|
|
--input-file $lang_dir/text \
|
|
--output-dir $lang_dir \
|
|
--lang $lang
|
|
|
|
mv $lang_dir/text $lang_dir/_text
|
|
cp $lang_dir/transcript_words.txt $lang_dir/text
|
|
|
|
if [ ! -f $lang_dir/tokens.txt ]; then
|
|
./local/prepare_char.py --lang-dir $lang_dir
|
|
fi
|
|
else
|
|
log "word_segment_${lang}.py not implemented yet"
|
|
exit 1
|
|
fi
|
|
fi
|
|
else
|
|
log "Stage 9: Prepare BPE based lang"
|
|
for vocab_size in ${vocab_sizes[@]}; do
|
|
lang_dir=data/${lang}/lang_bpe_${vocab_size}
|
|
mkdir -p $lang_dir
|
|
|
|
if [ ! -f $lang_dir/transcript_words.txt ]; then
|
|
log "Generate data for BPE training"
|
|
file=$(
|
|
find "data/${lang}/fbank/cv-${lang}_cuts_train.jsonl.gz"
|
|
)
|
|
# Prepare text.
|
|
# Note: in Linux, you can install jq with the following command:
|
|
# 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
|
|
# 2. chmod +x ./jq
|
|
# 3. cp jq /usr/bin
|
|
gunzip -c ${file} \
|
|
| jq '.supervisions[].text' | sed 's/"//g' > $lang_dir/transcript_words.txt
|
|
|
|
# Ensure space only appears once
|
|
sed -i 's/\t/ /g' $lang_dir/transcript_words.txt
|
|
sed -i 's/[ ][ ]*/ /g' $lang_dir/transcript_words.txt
|
|
fi
|
|
|
|
if [ ! -f $lang_dir/words.txt ]; then
|
|
cat $lang_dir/transcript_words.txt | sed 's/ /\n/g' \
|
|
| sort -u | sed '/^$/d' > $lang_dir/words.txt
|
|
(echo '!SIL'; echo '<SPOKEN_NOISE>'; echo '<UNK>'; ) |
|
|
cat - $lang_dir/words.txt | sort | uniq | awk '
|
|
BEGIN {
|
|
print "<eps> 0";
|
|
}
|
|
{
|
|
if ($1 == "<s>") {
|
|
print "<s> is in the vocabulary!" | "cat 1>&2"
|
|
exit 1;
|
|
}
|
|
if ($1 == "</s>") {
|
|
print "</s> is in the vocabulary!" | "cat 1>&2"
|
|
exit 1;
|
|
}
|
|
printf("%s %d\n", $1, NR);
|
|
}
|
|
END {
|
|
printf("#0 %d\n", NR+1);
|
|
printf("<s> %d\n", NR+2);
|
|
printf("</s> %d\n", NR+3);
|
|
}' > $lang_dir/words || exit 1;
|
|
mv $lang_dir/words $lang_dir/words.txt
|
|
fi
|
|
|
|
if [ ! -f $lang_dir/bpe.model ]; then
|
|
./local/train_bpe_model.py \
|
|
--lang-dir $lang_dir \
|
|
--vocab-size $vocab_size \
|
|
--transcript $lang_dir/transcript_words.txt
|
|
fi
|
|
|
|
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
|
./local/prepare_lang_bpe.py --lang-dir $lang_dir
|
|
|
|
log "Validating $lang_dir/lexicon.txt"
|
|
./local/validate_bpe_lexicon.py \
|
|
--lexicon $lang_dir/lexicon.txt \
|
|
--bpe-model $lang_dir/bpe.model
|
|
fi
|
|
|
|
if [ ! -f $lang_dir/L.fst ]; then
|
|
log "Converting L.pt to L.fst"
|
|
./shared/convert-k2-to-openfst.py \
|
|
--olabels aux_labels \
|
|
$lang_dir/L.pt \
|
|
$lang_dir/L.fst
|
|
fi
|
|
|
|
if [ ! -f $lang_dir/L_disambig.fst ]; then
|
|
log "Converting L_disambig.pt to L_disambig.fst"
|
|
./shared/convert-k2-to-openfst.py \
|
|
--olabels aux_labels \
|
|
$lang_dir/L_disambig.pt \
|
|
$lang_dir/L_disambig.fst
|
|
fi
|
|
done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
|
log "Stage 10: Prepare G"
|
|
# We assume you have install kaldilm, if not, please install
|
|
# it using: pip install kaldilm
|
|
|
|
if [ $lang == "yue" ] || [ $lang == "zh-TW" ] || [ $lang == "zh-CN" ] || [ $lang == "zh-HK" ]; then
|
|
lang_dir=data/${lang}/lang_char
|
|
mkdir -p $lang_dir/lm
|
|
|
|
for ngram in 3 ; do
|
|
if [ ! -f $lang_dir/lm/${ngram}-gram.unpruned.arpa ]; then
|
|
./shared/make_kn_lm.py \
|
|
-ngram-order ${ngram} \
|
|
-text $lang_dir/transcript_words.txt \
|
|
-lm $lang_dir/lm/${ngram}gram.unpruned.arpa
|
|
fi
|
|
|
|
if [ ! -f $lang_dir/lm/G_${ngram}_gram_char.fst.txt ]; then
|
|
python3 -m kaldilm \
|
|
--read-symbol-table="$lang_dir/words.txt" \
|
|
--disambig-symbol='#0' \
|
|
--max-order=${ngram} \
|
|
$lang_dir/lm/${ngram}gram.unpruned.arpa \
|
|
> $lang_dir/lm/G_${ngram}_gram_char.fst.txt
|
|
fi
|
|
|
|
if [ ! -f $lang_dir/lm/HLG.fst ]; then
|
|
./local/prepare_lang_fst.py \
|
|
--lang-dir $lang_dir \
|
|
--ngram-G $lang_dir/lm/G_${ngram}_gram_char.fst.txt
|
|
fi
|
|
done
|
|
else
|
|
for vocab_size in ${vocab_sizes[@]}; do
|
|
lang_dir=data/${lang}/lang_bpe_${vocab_size}
|
|
mkdir -p $lang_dir/lm
|
|
#3-gram used in building HLG, 4-gram used for LM rescoring
|
|
for ngram in 3 4; do
|
|
if [ ! -f $lang_dir/lm/${ngram}gram.arpa ]; then
|
|
./shared/make_kn_lm.py \
|
|
-ngram-order ${ngram} \
|
|
-text $lang_dir/transcript_words.txt \
|
|
-lm $lang_dir/lm/${ngram}gram.arpa
|
|
fi
|
|
|
|
if [ ! -f $lang_dir/lm/${ngram}gram.fst.txt ]; then
|
|
python3 -m kaldilm \
|
|
--read-symbol-table="$lang_dir/words.txt" \
|
|
--disambig-symbol='#0' \
|
|
--max-order=${ngram} \
|
|
$lang_dir/lm/${ngram}gram.arpa > $lang_dir/lm/G_${ngram}_gram.fst.txt
|
|
fi
|
|
done
|
|
done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
|
|
log "Stage 11: Compile HLG"
|
|
|
|
if [ $lang == "yue" ] || [ $lang == "zh-TW" ] || [ $lang == "zh-CN" ] || [ $lang == "zh-HK" ]; then
|
|
lang_dir=data/${lang}/lang_char
|
|
for ngram in 3 ; do
|
|
if [ ! -f $lang_dir/lm/HLG_${ngram}.fst ]; then
|
|
./local/compile_hlg.py --lang-dir $lang_dir --lm G_${ngram}_gram_char
|
|
fi
|
|
done
|
|
else
|
|
for vocab_size in ${vocab_sizes[@]}; do
|
|
lang_dir=data/${lang}/lang_bpe_${vocab_size}
|
|
./local/compile_hlg.py --lang-dir $lang_dir
|
|
|
|
# Note If ./local/compile_hlg.py throws OOM,
|
|
# please switch to the following command
|
|
#
|
|
# ./local/compile_hlg_using_openfst.py --lang-dir $lang_dir
|
|
done
|
|
fi
|
|
fi
|
|
|
|
# Compile LG for RNN-T fast_beam_search decoding
|
|
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
|
log "Stage 12: Compile LG"
|
|
|
|
if [ $lang == "yue" ] || [ $lang == "zh-TW" ] || [ $lang == "zh-CN" ] || [ $lang == "zh-HK" ]; then
|
|
lang_dir=data/${lang}/lang_char
|
|
for ngram in 3 ; do
|
|
if [ ! -f $lang_dir/lm/LG_${ngram}.fst ]; then
|
|
./local/compile_lg.py --lang-dir $lang_dir --lm G_${ngram}_gram_char
|
|
fi
|
|
done
|
|
else
|
|
for vocab_size in ${vocab_sizes[@]}; do
|
|
lang_dir=data/${lang}/lang_bpe_${vocab_size}
|
|
./local/compile_lg.py --lang-dir $lang_dir
|
|
done
|
|
fi
|
|
fi
|