mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
* update manifest stats * update transcript configs * lang_char and compute_fbanks * save cuts in fbank_dir * add core codes * update decode.py * Create local/utils * tidy up * parse raw in prepare_lang_char.py * update manifest stats * update transcript configs * lang_char and compute_fbanks * save cuts in fbank_dir * add core codes * update decode.py * Create local/utils * tidy up * parse raw in prepare_lang_char.py * working train * Add compare_cer_transcript.py * fix tokenizer decode, allow d2f only * comment cleanup * add export files and READMEs * reword average column * fix comments * Update new results
181 lines
5.6 KiB
Python
181 lines
5.6 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright 2023 The University of Electro-Communications (Author: Teo Wen Shen) # noqa
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
from typing import List, Tuple
|
|
|
|
import torch
|
|
|
|
# fmt: off
|
|
from lhotse import ( # See the following for why LilcomChunkyWriter is preferred; https://github.com/k2-fsa/icefall/pull/404; https://github.com/lhotse-speech/lhotse/pull/527
|
|
CutSet,
|
|
Fbank,
|
|
FbankConfig,
|
|
LilcomChunkyWriter,
|
|
RecordingSet,
|
|
SupervisionSet,
|
|
)
|
|
from lhotse.recipes.csj import concat_csj_supervisions
|
|
|
|
# fmt: on
|
|
|
|
# Torch's multithreaded behavior needs to be disabled or
|
|
# it wastes a lot of CPU and slow things down.
|
|
# Do this outside of main() in case it needs to take effect
|
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
RNG_SEED = 42
|
|
# concat_params_train = [
|
|
# {"gap": 1.0, "maxlen": 10.0},
|
|
# {"gap": 1.5, "maxlen": 8.0},
|
|
# {"gap": 1.0, "maxlen": 18.0},
|
|
# ]
|
|
|
|
concat_params = {"gap": 1.0, "maxlen": 10.0}
|
|
|
|
|
|
def make_cutset_blueprints(
|
|
manifest_dir: Path,
|
|
) -> List[Tuple[str, CutSet]]:
|
|
|
|
cut_sets = []
|
|
logging.info("Creating non-train cuts.")
|
|
|
|
# Create eval datasets
|
|
for i in range(1, 4):
|
|
sps = sorted(
|
|
SupervisionSet.from_file(
|
|
manifest_dir / f"csj_supervisions_eval{i}.jsonl.gz"
|
|
),
|
|
key=lambda x: x.id,
|
|
)
|
|
|
|
cut_set = CutSet.from_manifests(
|
|
recordings=RecordingSet.from_file(
|
|
manifest_dir / f"csj_recordings_eval{i}.jsonl.gz"
|
|
),
|
|
supervisions=concat_csj_supervisions(sps, **concat_params),
|
|
)
|
|
cut_set = cut_set.trim_to_supervisions(keep_overlapping=False)
|
|
cut_sets.append((f"eval{i}", cut_set))
|
|
|
|
# Create excluded dataset
|
|
sps = sorted(
|
|
SupervisionSet.from_file(manifest_dir / "csj_supervisions_excluded.jsonl.gz"),
|
|
key=lambda x: x.id,
|
|
)
|
|
cut_set = CutSet.from_manifests(
|
|
recordings=RecordingSet.from_file(
|
|
manifest_dir / "csj_recordings_excluded.jsonl.gz"
|
|
),
|
|
supervisions=concat_csj_supervisions(sps, **concat_params),
|
|
)
|
|
cut_set = cut_set.trim_to_supervisions(keep_overlapping=False)
|
|
cut_sets.append(("excluded", cut_set))
|
|
|
|
# Create valid dataset
|
|
sps = sorted(
|
|
SupervisionSet.from_file(manifest_dir / "csj_supervisions_valid.jsonl.gz"),
|
|
key=lambda x: x.id,
|
|
)
|
|
cut_set = CutSet.from_manifests(
|
|
recordings=RecordingSet.from_file(
|
|
manifest_dir / "csj_recordings_valid.jsonl.gz"
|
|
),
|
|
supervisions=concat_csj_supervisions(sps, **concat_params),
|
|
)
|
|
cut_set = cut_set.trim_to_supervisions(keep_overlapping=False)
|
|
cut_sets.append(("valid", cut_set))
|
|
|
|
logging.info("Creating train cuts.")
|
|
|
|
# Create train dataset
|
|
sps = sorted(
|
|
SupervisionSet.from_file(manifest_dir / "csj_supervisions_core.jsonl.gz")
|
|
+ SupervisionSet.from_file(manifest_dir / "csj_supervisions_noncore.jsonl.gz"),
|
|
key=lambda x: x.id,
|
|
)
|
|
|
|
recording = RecordingSet.from_file(
|
|
manifest_dir / "csj_recordings_core.jsonl.gz"
|
|
) + RecordingSet.from_file(manifest_dir / "csj_recordings_noncore.jsonl.gz")
|
|
|
|
train_set = CutSet.from_manifests(
|
|
recordings=recording, supervisions=concat_csj_supervisions(sps, **concat_params)
|
|
).trim_to_supervisions(keep_overlapping=False)
|
|
train_set = train_set + train_set.perturb_speed(0.9) + train_set.perturb_speed(1.1)
|
|
|
|
cut_sets.append(("train", train_set))
|
|
|
|
return cut_sets
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
parser.add_argument(
|
|
"-m", "--manifest-dir", type=Path, help="Path to save manifests"
|
|
)
|
|
parser.add_argument(
|
|
"-f", "--fbank-dir", type=Path, help="Path to save fbank features"
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def main():
|
|
args = get_args()
|
|
|
|
extractor = Fbank(FbankConfig(num_mel_bins=80))
|
|
num_jobs = min(16, os.cpu_count())
|
|
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
|
|
if (args.fbank_dir / ".done").exists():
|
|
logging.info(
|
|
"Previous fbank computed for CSJ found. "
|
|
f"Delete {args.fbank_dir / '.done'} to allow recomputing fbank."
|
|
)
|
|
return
|
|
else:
|
|
cut_sets = make_cutset_blueprints(args.manifest_dir)
|
|
for part, cut_set in cut_sets:
|
|
logging.info(f"Processing {part}")
|
|
cut_set = cut_set.compute_and_store_features(
|
|
extractor=extractor,
|
|
num_jobs=num_jobs,
|
|
storage_path=(args.fbank_dir / f"feats_{part}").as_posix(),
|
|
storage_type=LilcomChunkyWriter,
|
|
)
|
|
cut_set.to_file(args.fbank_dir / f"csj_cuts_{part}.jsonl.gz")
|
|
|
|
logging.info("All fbank computed for CSJ.")
|
|
(args.fbank_dir / ".done").touch()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|