#!/usr/bin/env bash set -eou pipefail # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python stage=1 stop_stage=4 dl_dir=$PWD/download dataset_parts="Premium" # Basic for all 7226 hours data, Premium for 945 hours subset. text_extractor="pypinyin_initials_finals" # default is espeak for English audio_extractor="Encodec" # or Fbank audio_feats_dir=data/tokenized . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "dl_dir: $dl_dir" log "Stage 0: Download data" huggingface-cli login huggingface-cli download --repo-type dataset --local-dir $dl_dir Wenetspeech4TTS/WenetSpeech4TTS # Extract the downloaded data: for folder in Standard Premium Basic; do for file in "$dl_dir/$folder"/*.tar.gz; do tar -xzvf "$file" -C "$dl_dir/$folder" done done fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare wenetspeech4tts manifest" # We assume that you have downloaded the wenetspeech4tts corpus # to $dl_dir/wenetspeech4tts mkdir -p data/manifests if [ ! -e data/manifests/.wenetspeech4tts.done ]; then lhotse prepare wenetspeech4tts $dl_dir data/manifests --dataset-parts "${dataset_parts}" touch data/manifests/.wenetspeech4tts.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Tokenize/Fbank wenetspeech4tts" mkdir -p ${audio_feats_dir} if [ ! -e ${audio_feats_dir}/.wenetspeech4tts.tokenize.done ]; then python3 ./local/compute_neural_codec_and_prepare_text_tokens.py --dataset-parts "${dataset_parts}" \ --text-extractor ${text_extractor} \ --audio-extractor ${audio_extractor} \ --batch-duration 2500 --prefix "wenetspeech4tts" \ --src-dir "data/manifests" \ --split 100 \ --output-dir "${audio_feats_dir}/wenetspeech4tts_${dataset_parts}_split_100" cp ${audio_feats_dir}/wenetspeech4tts_${dataset_parts}_split_100/unique_text_tokens.k2symbols ${audio_feats_dir} fi touch ${audio_feats_dir}/.wenetspeech4tts.tokenize.done fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Combine features" if [ ! -f ${audio_feats_dir}/wenetspeech4tts_cuts_${dataset_parts}.jsonl.gz ]; then pieces=$(find ${audio_feats_dir}/wenetspeech4tts_${dataset_parts}_split_100 -name "*.jsonl.gz") lhotse combine $pieces ${audio_feats_dir}/wenetspeech4tts_cuts_${dataset_parts}.jsonl.gz fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Prepare wenetspeech4tts train/dev/test" if [ ! -e ${audio_feats_dir}/.wenetspeech4tts.train.done ]; then lhotse subset --first 400 \ ${audio_feats_dir}/wenetspeech4tts_cuts_${dataset_parts}.jsonl.gz \ ${audio_feats_dir}/cuts_dev.jsonl.gz lhotse subset --last 400 \ ${audio_feats_dir}/wenetspeech4tts_cuts_${dataset_parts}.jsonl.gz \ ${audio_feats_dir}/cuts_test.jsonl.gz lhotse copy \ ${audio_feats_dir}/wenetspeech4tts_cuts_${dataset_parts}.jsonl.gz \ ${audio_feats_dir}/cuts_train.jsonl.gz touch ${audio_feats_dir}/.wenetspeech4tts.train.done fi python3 ./local/display_manifest_statistics.py --manifest-dir ${audio_feats_dir} fi subset="Basic" prefix="wenetspeech4tts" if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Generate fbank (used by ./f5-tts)" mkdir -p data/fbank if [ ! -e data/fbank/.${prefix}.done ]; then ./local/compute_mel_feat.py --dataset-parts $subset --split 100 touch data/fbank/.${prefix}.done fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Split the ${prefix} cuts into train, valid and test sets (used by ./f5-tts)" if [ ! -f data/fbank/${prefix}_cuts_${subset}.jsonl.gz ]; then echo "Combining ${prefix} cuts" pieces=$(find data/fbank/ -name "${prefix}_cuts_${subset}.*.jsonl.gz") lhotse combine $pieces data/fbank/${prefix}_cuts_${subset}.jsonl.gz fi if [ ! -e data/fbank/.${prefix}_split.done ]; then echo "Splitting ${prefix} cuts into train, valid and test sets" lhotse subset --last 800 \ data/fbank/${prefix}_cuts_${subset}.jsonl.gz \ data/fbank/${prefix}_cuts_validtest.jsonl.gz lhotse subset --first 400 \ data/fbank/${prefix}_cuts_validtest.jsonl.gz \ data/fbank/${prefix}_cuts_valid.jsonl.gz lhotse subset --last 400 \ data/fbank/${prefix}_cuts_validtest.jsonl.gz \ data/fbank/${prefix}_cuts_test.jsonl.gz rm data/fbank/${prefix}_cuts_validtest.jsonl.gz n=$(( $(gunzip -c data/fbank/${prefix}_cuts_${subset}.jsonl.gz | wc -l) - 800 )) lhotse subset --first $n \ data/fbank/${prefix}_cuts_${subset}.jsonl.gz \ data/fbank/${prefix}_cuts_train.jsonl.gz touch data/fbank/.${prefix}_split.done fi fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Extract cosyvoice2 FSQ token (used by ./f5-tts semantic token experiment)" split_name=("valid" "test" "train") for split in "${split_name[@]}"; do echo "Processing $split" wav_scp_file=wav_${split}.scp output_dir="./cosy_v2_tokens_${split}" oringinal_jsonl_file=data/fbank/${prefix}_cuts_${split}.jsonl.gz mkdir -p $output_dir zcat $oringinal_jsonl_file | jq -r '.recording.id + " " + .recording.sources[0].source' > $wav_scp_file torchrun --nproc_per_node=8 --nnodes=1 \ --rdzv_id=2024 --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \ `which s3tokenizer` --wav_scp $wav_scp_file \ --device "cuda" \ --output_dir $output_dir \ --batch_size 32 \ --num_workers 4 \ --model "speech_tokenizer_v2_25hz" # or "speech_tokenizer_v1_25hz cat $output_dir/* > $output_dir/${prefix}_${split}_cosy_v2_tokens.json python3 local/attach_speech_tokens.py --jsonl-prefix ${prefix}_cuts_${split} --tokens-path $output_dir/${prefix}_${split}_cosy_v2_tokens.json --manifest-dir data/fbank done fi