#!/usr/bin/env python3 # # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script converts several saved checkpoints # to a single one using model averaging. import argparse import logging from pathlib import Path import torch from model import RnnLmModel from icefall.checkpoint import load_checkpoint from icefall.utils import AttributeDict, load_averaged_model, str2bool def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--epoch", type=int, default=29, help="It specifies the checkpoint to use for decoding." "Note: Epoch counts from 0.", ) parser.add_argument( "--avg", type=int, default=5, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch'. ", ) parser.add_argument( "--vocab-size", type=int, default=500, help="Vocabulary size of the model", ) parser.add_argument( "--embedding-dim", type=int, default=2048, help="Embedding dim of the model", ) parser.add_argument( "--hidden-dim", type=int, default=2048, help="Hidden dim of the model", ) parser.add_argument( "--num-layers", type=int, default=3, help="Number of RNN layers the model", ) parser.add_argument( "--tie-weights", type=str2bool, default=True, help="""True to share the weights between the input embedding layer and the last output linear layer """, ) parser.add_argument( "--exp-dir", type=str, default="rnn_lm/exp", help="""It specifies the directory where all training related files, e.g., checkpoints, log, etc, are saved """, ) parser.add_argument( "--jit", type=str2bool, default=True, help="""True to save a model after applying torch.jit.script. """, ) return parser def main(): args = get_parser().parse_args() args.exp_dir = Path(args.exp_dir) params = AttributeDict({}) params.update(vars(args)) logging.info(params) device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"device: {device}") model = RnnLmModel( vocab_size=params.vocab_size, embedding_dim=params.embedding_dim, hidden_dim=params.hidden_dim, num_layers=params.num_layers, tie_weights=params.tie_weights, ) model.to(device) if params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: model = load_averaged_model( params.exp_dir, model, params.epoch, params.avg, device ) model.to("cpu") model.eval() if params.jit: logging.info("Using torch.jit.script") model = torch.jit.script(model) filename = params.exp_dir / "cpu_jit.pt" model.save(str(filename)) logging.info(f"Saved to {filename}") else: logging.info("Not using torch.jit.script") # Save it using a format so that it can be loaded # by :func:`load_checkpoint` filename = params.exp_dir / "pretrained.pt" torch.save({"model": model.state_dict()}, str(filename)) logging.info(f"Saved to {filename}") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()