#!/usr/bin/env bash set -eou pipefail stage=-1 stop_stage=100 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/ami # You can find audio and transcripts for AMI in this path. # # - $dl_dir/icsi # You can find audio and transcripts for ICSI in this path. # # - $dl_dir/rirs_noises # This directory contains the RIRS_NOISES corpus downloaded from https://openslr.org/28/. # dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data vocab_size=500 log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/amicorpus, # you can create a symlink # # ln -sfv /path/to/amicorpus $dl_dir/amicorpus # if [ ! -d $dl_dir/amicorpus ]; then for mic in ihm ihm-mix sdm mdm8-bf; do lhotse download ami --mic $mic $dl_dir/amicorpus done fi # If you have pre-downloaded it to /path/to/icsi, # you can create a symlink # # ln -sfv /path/to/icsi $dl_dir/icsi # if [ ! -d $dl_dir/icsi ]; then lhotse download icsi $dl_dir/icsi fi # If you have pre-downloaded it to /path/to/rirs_noises, # you can create a symlink # # ln -sfv /path/to/rirs_noises $dl_dir/ # if [ ! -d $dl_dir/rirs_noises ]; then lhotse download rirs_noises $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare AMI manifests" # We assume that you have downloaded the AMI corpus # to $dl_dir/amicorpus. We perform text normalization for the transcripts. mkdir -p data/manifests for mic in ihm ihm-mix sdm mdm8-bf; do log "Preparing AMI manifest for $mic" lhotse prepare ami --mic $mic --max-words-per-segment 30 --merge-consecutive $dl_dir/amicorpus data/manifests/ done fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare ICSI manifests" # We assume that you have downloaded the ICSI corpus # to $dl_dir/icsi. We perform text normalization for the transcripts. mkdir -p data/manifests log "Preparing ICSI manifest" for mic in ihm ihm-mix sdm; do lhotse prepare icsi --mic $mic $dl_dir/icsi data/manifests/ done fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Prepare RIRs" # We assume that you have downloaded the RIRS_NOISES corpus # to $dl_dir/rirs_noises lhotse prepare rir-noise -p real_rir -p iso_noise $dl_dir/rirs_noises data/manifests fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 3: Extract features for AMI and ICSI recordings" python local/compute_fbank_ami.py python local/compute_fbank_icsi.py fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Create sources for simulating mixtures" # In the following script, we speed-perturb the IHM recordings and extract features. python local/compute_fbank_ihm.py lhotse combine data/manifests/ami-ihm_cuts_train.jsonl.gz \ data/manifests/icsi-ihm_cuts_train.jsonl.gz - |\ lhotse cut trim-to-alignments --type word --max-pause 0.5 - - |\ lhotse filter 'duration<=12.0' - - |\ shuf | gzip -c > data/manifests/ihm_cuts_train_trimmed.jsonl.gz fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Create training mixtures" lhotse workflows simulate-meetings \ --method conversational \ --same-spk-pause 0.5 \ --diff-spk-pause 0.5 \ --diff-spk-overlap 1.0 \ --prob-diff-spk-overlap 0.8 \ --num-meetings 200000 \ --num-speakers-per-meeting 2,3 \ --max-duration-per-speaker 15.0 \ --max-utterances-per-speaker 3 \ --seed 1234 \ --num-jobs 2 \ data/manifests/ihm_cuts_train_trimmed.jsonl.gz \ data/manifests/ai-mix_cuts_clean.jsonl.gz python local/compute_fbank_aimix.py # Add source features to the manifest (will be used for masking loss) # This may take ~2 hours. python local/add_source_feats.py # Combine clean and reverb cat <(gunzip -c data/manifests/cuts_train_clean_sources.jsonl.gz) \ <(gunzip -c data/manifests/cuts_train_reverb_sources.jsonl.gz) |\ shuf | gzip -c > data/manifests/cuts_train_comb_sources.jsonl.gz fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Create training mixtures from real sessions" python local/prepare_ami_train_cuts.py python local/prepare_icsi_train_cuts.py # Combine AMI and ICSI cat <(gunzip -c data/manifests/cuts_train_ami.jsonl.gz) \ <(gunzip -c data/manifests/cuts_train_icsi.jsonl.gz) |\ shuf | gzip -c > data/manifests/cuts_train_ami_icsi.jsonl.gz fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Dump transcripts for BPE model training (using AMI and ICSI)." mkdir -p data/lm cat <(gunzip -c data/manifests/ami-sdm_supervisions_train.jsonl.gz | jq '.text' | sed 's:"::g') \ <(gunzip -c data/manifests/icsi-sdm_supervisions_train.jsonl.gz | jq '.text' | sed 's:"::g') \ > data/lm/transcript_words.txt fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Prepare BPE based lang (combining AMI and ICSI)" lang_dir=data/lang_bpe_${vocab_size} mkdir -p $lang_dir # Add special words to words.txt echo " 0" > $lang_dir/words.txt echo "!SIL 1" >> $lang_dir/words.txt echo " 2" >> $lang_dir/words.txt # Add regular words to words.txt cat data/lm/transcript_words.txt | grep -o -E '\w+' | sort -u | awk '{print $0,NR+2}' >> $lang_dir/words.txt # Add remaining special word symbols expected by LM scripts. num_words=$(cat $lang_dir/words.txt | wc -l) echo " ${num_words}" >> $lang_dir/words.txt num_words=$(cat $lang_dir/words.txt | wc -l) echo " ${num_words}" >> $lang_dir/words.txt num_words=$(cat $lang_dir/words.txt | wc -l) echo "#0 ${num_words}" >> $lang_dir/words.txt ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript data/lm/transcript_words.txt if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bpe.py --lang-dir $lang_dir fi fi