#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, # Wei Kang, # Mingshuang Luo,) # Zengwei Yao) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Usage: # ./dprnn_zipformer/train.py should be run before this script. export CUDA_VISIBLE_DEVICES="0,1,2,3" ./dprnn_zipformer/train.py \ --world-size 4 \ --num-epochs 30 \ --start-epoch 1 \ --use-fp16 1 \ --exp-dir dprnn_zipformer/exp_adapt \ --model-init-ckpt dprnn_zipformer/exp/epoch-30.pt \ --max-duration 550 """ import argparse import copy import logging import warnings from itertools import chain from pathlib import Path from shutil import copyfile from typing import Any, Dict, Optional, Tuple, Union import k2 import optim import sentencepiece as spm import torch import torch.multiprocessing as mp import torch.nn as nn from asr_datamodule import AmiAsrDataModule from decoder import Decoder from dprnn import DPRNN from einops.layers.torch import Rearrange from joiner import Joiner from lhotse.cut import Cut from lhotse.dataset.sampling.base import CutSampler from lhotse.utils import LOG_EPSILON, fix_random_seed from model import SURT from optim import Eden, ScaledAdam from scaling import ScaledLinear, ScaledLSTM from torch import Tensor from torch.cuda.amp import GradScaler from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.tensorboard import SummaryWriter from zipformer import Zipformer from icefall import diagnostics from icefall.checkpoint import load_checkpoint, remove_checkpoints from icefall.checkpoint import save_checkpoint as save_checkpoint_impl from icefall.checkpoint import ( save_checkpoint_with_global_batch_idx, update_averaged_model, ) from icefall.dist import cleanup_dist, setup_dist from icefall.env import get_env_info from icefall.err import raise_grad_scale_is_too_small_error from icefall.utils import ( AttributeDict, MetricsTracker, setup_logger, str2bool, torch_autocast, ) LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None: if isinstance(model, DDP): # get underlying nn.Module model = model.module for module in model.modules(): if hasattr(module, "batch_count"): module.batch_count = batch_count def add_model_arguments(parser: argparse.ArgumentParser): parser.add_argument( "--num-mask-encoder-layers", type=int, default=4, help="Number of layers in the DPRNN based mask encoder.", ) parser.add_argument( "--mask-encoder-dim", type=int, default=256, help="Hidden dimension of the LSTM blocks in DPRNN.", ) parser.add_argument( "--mask-encoder-segment-size", type=int, default=32, help="Segment size of the SegLSTM in DPRNN. Ideally, this should be equal to the " "decode-chunk-length of the zipformer encoder.", ) parser.add_argument( "--chunk-width-randomization", type=bool, default=False, help="Whether to randomize the chunk width in DPRNN.", ) # Zipformer config is based on: # https://github.com/k2-fsa/icefall/pull/745#issuecomment-1405282740 parser.add_argument( "--num-encoder-layers", type=str, default="2,2,2,2,2", help="Number of zipformer encoder layers, comma separated.", ) parser.add_argument( "--feedforward-dims", type=str, default="768,768,768,768,768", help="Feedforward dimension of the zipformer encoder layers, comma separated.", ) parser.add_argument( "--nhead", type=str, default="8,8,8,8,8", help="Number of attention heads in the zipformer encoder layers.", ) parser.add_argument( "--encoder-dims", type=str, default="256,256,256,256,256", help="Embedding dimension in the 2 blocks of zipformer encoder layers, comma separated", ) parser.add_argument( "--attention-dims", type=str, default="192,192,192,192,192", help="""Attention dimension in the 2 blocks of zipformer encoder layers, comma separated; not the same as embedding dimension.""", ) parser.add_argument( "--encoder-unmasked-dims", type=str, default="192,192,192,192,192", help="Unmasked dimensions in the encoders, relates to augmentation during training. " "Must be <= each of encoder_dims. Empirically, less than 256 seems to make performance " " worse.", ) parser.add_argument( "--zipformer-downsampling-factors", type=str, default="1,2,4,8,2", help="Downsampling factor for each stack of encoder layers.", ) parser.add_argument( "--cnn-module-kernels", type=str, default="31,31,31,31,31", help="Sizes of kernels in convolution modules", ) parser.add_argument( "--use-joint-encoder-layer", type=str, default="linear", choices=["linear", "lstm", "none"], help="Whether to use a joint layer to combine all branches.", ) parser.add_argument( "--decoder-dim", type=int, default=512, help="Embedding dimension in the decoder model.", ) parser.add_argument( "--joiner-dim", type=int, default=512, help="""Dimension used in the joiner model. Outputs from the encoder and decoder model are projected to this dimension before adding. """, ) parser.add_argument( "--short-chunk-size", type=int, default=50, help="""Chunk length of dynamic training, the chunk size would be either max sequence length of current batch or uniformly sampled from (1, short_chunk_size). """, ) parser.add_argument( "--num-left-chunks", type=int, default=4, help="How many left context can be seen in chunks when calculating attention.", ) parser.add_argument( "--decode-chunk-len", type=int, default=32, help="The chunk size for decoding (in frames before subsampling)", ) def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--world-size", type=int, default=1, help="Number of GPUs for DDP training.", ) parser.add_argument( "--master-port", type=int, default=12354, help="Master port to use for DDP training.", ) parser.add_argument( "--tensorboard", type=str2bool, default=True, help="Should various information be logged in tensorboard.", ) parser.add_argument( "--num-epochs", type=int, default=20, help="Number of epochs to train.", ) parser.add_argument( "--start-epoch", type=int, default=1, help="""Resume training from this epoch. It should be positive. If larger than 1, it will load checkpoint from exp-dir/epoch-{start_epoch-1}.pt """, ) parser.add_argument( "--start-batch", type=int, default=0, help="""If positive, --start-epoch is ignored and it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt """, ) parser.add_argument( "--exp-dir", type=str, default="conv_lstm_transducer_stateless_ctc/exp", help="""The experiment dir. It specifies the directory where all training related files, e.g., checkpoints, log, etc, are saved """, ) parser.add_argument( "--model-init-ckpt", type=str, default=None, help="""The model checkpoint to initialize the model (either full or part). If not specified, the model is randomly initialized. """, ) parser.add_argument( "--bpe-model", type=str, default="data/lang_bpe_500/bpe.model", help="Path to the BPE model", ) parser.add_argument( "--base-lr", type=float, default=0.0001, help="The base learning rate." ) parser.add_argument( "--lr-batches", type=float, default=5000, help="""Number of steps that affects how rapidly the learning rate decreases. We suggest not to change this.""", ) parser.add_argument( "--lr-epochs", type=float, default=2, help="""Number of epochs that affects how rapidly the learning rate decreases. """, ) parser.add_argument( "--context-size", type=int, default=2, help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--prune-range", type=int, default=5, help="The prune range for rnnt loss, it means how many symbols(context)" "we are using to compute the loss", ) parser.add_argument( "--lm-scale", type=float, default=0.25, help="The scale to smooth the loss with lm " "(output of prediction network) part.", ) parser.add_argument( "--am-scale", type=float, default=0.0, help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( "--simple-loss-scale", type=float, default=0.5, help="To get pruning ranges, we will calculate a simple version" "loss(joiner is just addition), this simple loss also uses for" "training (as a regularization item). We will scale the simple loss" "with this parameter before adding to the final loss.", ) parser.add_argument( "--ctc-loss-scale", type=float, default=0.2, help="Scale for CTC loss.", ) parser.add_argument( "--seed", type=int, default=42, help="The seed for random generators intended for reproducibility", ) parser.add_argument( "--print-diagnostics", type=str2bool, default=False, help="Accumulate stats on activations, print them and exit.", ) parser.add_argument( "--save-every-n", type=int, default=2000, help="""Save checkpoint after processing this number of batches" periodically. We save checkpoint to exp-dir/ whenever params.batch_idx_train % save_every_n == 0. The checkpoint filename has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt' Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the end of each epoch where `xxx` is the epoch number counting from 0. """, ) parser.add_argument( "--keep-last-k", type=int, default=1, help="""Only keep this number of checkpoints on disk. For instance, if it is 3, there are only 3 checkpoints in the exp-dir with filenames `checkpoint-xxx.pt`. It does not affect checkpoints with name `epoch-xxx.pt`. """, ) parser.add_argument( "--average-period", type=int, default=100, help="""Update the averaged model, namely `model_avg`, after processing this number of batches. `model_avg` is a separate version of model, in which each floating-point parameter is the average of all the parameters from the start of training. Each time we take the average, we do: `model_avg = model * (average_period / batch_idx_train) + model_avg * ((batch_idx_train - average_period) / batch_idx_train)`. """, ) parser.add_argument( "--use-fp16", type=str2bool, default=False, help="Whether to use half precision training.", ) add_model_arguments(parser) return parser def get_params() -> AttributeDict: """Return a dict containing training parameters. All training related parameters that are not passed from the commandline are saved in the variable `params`. Commandline options are merged into `params` after they are parsed, so you can also access them via `params`. Explanation of options saved in `params`: - best_train_loss: Best training loss so far. It is used to select the model that has the lowest training loss. It is updated during the training. - best_valid_loss: Best validation loss so far. It is used to select the model that has the lowest validation loss. It is updated during the training. - best_train_epoch: It is the epoch that has the best training loss. - best_valid_epoch: It is the epoch that has the best validation loss. - batch_idx_train: Used to writing statistics to tensorboard. It contains number of batches trained so far across epochs. - log_interval: Print training loss if batch_idx % log_interval` is 0 - reset_interval: Reset statistics if batch_idx % reset_interval is 0 - valid_interval: Run validation if batch_idx % valid_interval is 0 - feature_dim: The model input dim. It has to match the one used in computing features. - subsampling_factor: The subsampling factor for the model. - num_decoder_layers: Number of decoder layer of transformer decoder. - warm_step: The warm_step for Noam optimizer. """ params = AttributeDict( { "best_train_loss": float("inf"), "best_valid_loss": float("inf"), "best_train_epoch": -1, "best_valid_epoch": -1, "batch_idx_train": 0, "log_interval": 50, "reset_interval": 200, "valid_interval": 2000, # parameters for SURT "num_channels": 2, "feature_dim": 80, "subsampling_factor": 4, # not passed in, this is fixed # parameters for Noam "model_warm_step": 5000, # arg given to model, not for lrate # parameters for ctc loss "beam_size": 10, "use_double_scores": True, "env_info": get_env_info(), } ) return params def get_mask_encoder_model(params: AttributeDict) -> nn.Module: mask_encoder = DPRNN( feature_dim=params.feature_dim, input_size=params.mask_encoder_dim, hidden_size=params.mask_encoder_dim, output_size=params.feature_dim * params.num_channels, segment_size=params.mask_encoder_segment_size, num_blocks=params.num_mask_encoder_layers, chunk_width_randomization=params.chunk_width_randomization, ) return mask_encoder def get_encoder_model(params: AttributeDict) -> nn.Module: # TODO: We can add an option to switch between Zipformer and Transformer def to_int_tuple(s: str): return tuple(map(int, s.split(","))) encoder = Zipformer( num_features=params.feature_dim, output_downsampling_factor=2, zipformer_downsampling_factors=to_int_tuple( params.zipformer_downsampling_factors ), encoder_dims=to_int_tuple(params.encoder_dims), attention_dim=to_int_tuple(params.attention_dims), encoder_unmasked_dims=to_int_tuple(params.encoder_unmasked_dims), nhead=to_int_tuple(params.nhead), feedforward_dim=to_int_tuple(params.feedforward_dims), cnn_module_kernels=to_int_tuple(params.cnn_module_kernels), num_encoder_layers=to_int_tuple(params.num_encoder_layers), num_left_chunks=params.num_left_chunks, short_chunk_size=params.short_chunk_size, decode_chunk_size=params.decode_chunk_len // 2, ) return encoder def get_joint_encoder_layer(params: AttributeDict) -> nn.Module: class TakeFirst(nn.Module): def forward(self, x): return x[0] if params.use_joint_encoder_layer == "linear": encoder_dim = int(params.encoder_dims.split(",")[-1]) joint_layer = nn.Sequential( Rearrange("(c b) t d -> b t (c d)", c=params.num_channels), nn.Linear( params.num_channels * encoder_dim, params.num_channels * encoder_dim ), nn.ReLU(), Rearrange("b t (c d) -> (c b) t d", c=params.num_channels), ) elif params.use_joint_encoder_layer == "lstm": encoder_dim = int(params.encoder_dims.split(",")[-1]) joint_layer = nn.Sequential( Rearrange("(c b) t d -> b t (c d)", c=params.num_channels), ScaledLSTM( input_size=params.num_channels * encoder_dim, hidden_size=params.num_channels * encoder_dim, num_layers=1, bias=True, batch_first=True, dropout=0.0, bidirectional=False, ), TakeFirst(), nn.ReLU(), Rearrange("b t (c d) -> (c b) t d", c=params.num_channels), ) elif params.use_joint_encoder_layer == "none": joint_layer = None else: raise ValueError( f"Unknown joint encoder layer type: {params.use_joint_encoder_layer}" ) return joint_layer def get_decoder_model(params: AttributeDict) -> nn.Module: decoder = Decoder( vocab_size=params.vocab_size, decoder_dim=params.decoder_dim, blank_id=params.blank_id, context_size=params.context_size, ) return decoder def get_joiner_model(params: AttributeDict) -> nn.Module: joiner = Joiner( encoder_dim=int(params.encoder_dims.split(",")[-1]), decoder_dim=params.decoder_dim, joiner_dim=params.joiner_dim, vocab_size=params.vocab_size, ) return joiner def get_surt_model( params: AttributeDict, ) -> nn.Module: mask_encoder = get_mask_encoder_model(params) encoder = get_encoder_model(params) joint_layer = get_joint_encoder_layer(params) decoder = get_decoder_model(params) joiner = get_joiner_model(params) model = SURT( mask_encoder=mask_encoder, encoder=encoder, joint_encoder_layer=joint_layer, decoder=decoder, joiner=joiner, num_channels=params.num_channels, encoder_dim=int(params.encoder_dims.split(",")[-1]), decoder_dim=params.decoder_dim, joiner_dim=params.joiner_dim, vocab_size=params.vocab_size, ) return model def load_checkpoint_if_available( params: AttributeDict, model: nn.Module, model_avg: nn.Module = None, optimizer: Optional[torch.optim.Optimizer] = None, scheduler: Optional[LRSchedulerType] = None, ) -> Optional[Dict[str, Any]]: """Load checkpoint from file. If params.start_batch is positive, it will load the checkpoint from `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if params.start_epoch is larger than 1, it will load the checkpoint from `params.start_epoch - 1`. Apart from loading state dict for `model` and `optimizer` it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, and `best_valid_loss` in `params`. Args: params: The return value of :func:`get_params`. model: The training model. model_avg: The stored model averaged from the start of training. optimizer: The optimizer that we are using. scheduler: The scheduler that we are using. Returns: Return a dict containing previously saved training info. """ if params.start_batch > 0: filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" elif params.start_epoch > 1: filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" else: return None assert filename.is_file(), f"{filename} does not exist!" saved_params = load_checkpoint( filename, model=model, model_avg=model_avg, optimizer=optimizer, scheduler=scheduler, ) keys = [ "best_train_epoch", "best_valid_epoch", "batch_idx_train", "best_train_loss", "best_valid_loss", ] for k in keys: params[k] = saved_params[k] if params.start_batch > 0: if "cur_epoch" in saved_params: params["start_epoch"] = saved_params["cur_epoch"] return saved_params def save_checkpoint( params: AttributeDict, model: Union[nn.Module, DDP], model_avg: Optional[nn.Module] = None, optimizer: Optional[torch.optim.Optimizer] = None, scheduler: Optional[LRSchedulerType] = None, sampler: Optional[CutSampler] = None, scaler: Optional[GradScaler] = None, rank: int = 0, ) -> None: """Save model, optimizer, scheduler and training stats to file. Args: params: It is returned by :func:`get_params`. model: The training model. model_avg: The stored model averaged from the start of training. optimizer: The optimizer used in the training. sampler: The sampler for the training dataset. scaler: The scaler used for mix precision training. """ if rank != 0: return filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" save_checkpoint_impl( filename=filename, model=model, model_avg=model_avg, params=params, optimizer=optimizer, scheduler=scheduler, sampler=sampler, scaler=scaler, rank=rank, ) if params.best_train_epoch == params.cur_epoch: best_train_filename = params.exp_dir / "best-train-loss.pt" copyfile(src=filename, dst=best_train_filename) if params.best_valid_epoch == params.cur_epoch: best_valid_filename = params.exp_dir / "best-valid-loss.pt" copyfile(src=filename, dst=best_valid_filename) def compute_heat_loss(x_masked, batch, num_channels=2) -> Tensor: """ Compute HEAT loss for separated sources using the output of mask encoder. Args: x_masked: The output of mask encoder. It is a tensor of shape (B, T, C). batch: A batch of data. See `lhotse.dataset.K2SurtDatasetWithSources()` for the content in it. num_channels: The number of output branches in the SURT model. """ B, T, D = x_masked[0].shape device = x_masked[0].device # Create training targets for each channel. targets = [] for i in range(num_channels): target = torch.ones_like(x_masked[i]) * LOG_EPSILON targets.append(target) source_feats = batch["source_feats"] source_boundaries = batch["source_boundaries"] input_lens = batch["input_lens"].to(device) # Assign sources to channels based on the HEAT criteria for b in range(B): cut_source_feats = source_feats[b] cut_source_boundaries = source_boundaries[b] last_seg_end = [0 for _ in range(num_channels)] for source_feat, (start, end) in zip(cut_source_feats, cut_source_boundaries): assigned = False for i in range(num_channels): if start >= last_seg_end[i]: targets[i][b, start:end, :] += source_feat.to(device) last_seg_end[i] = max(end, last_seg_end[i]) assigned = True break if not assigned: min_end_channel = last_seg_end.index(min(last_seg_end)) targets[min_end_channel][b, start:end, :] += source_feat last_seg_end[min_end_channel] = max(end, last_seg_end[min_end_channel]) # Get padding mask based on input lengths pad_mask = torch.arange(T, device=device).expand(B, T) > input_lens.unsqueeze(1) pad_mask = pad_mask.unsqueeze(-1) # Compute masked loss for each channel losses = torch.zeros((num_channels, B, T, D), device=device) for i in range(num_channels): loss = nn.functional.mse_loss(x_masked[i], targets[i], reduction="none") # Apply padding mask to loss loss.masked_fill_(pad_mask, 0) losses[i] = loss # loss: C x B x T x D. pad_mask: B x T x 1 # We want to compute loss for each item in the batch. Each item has loss given # by the sum over C, and average over T and D. For T, we need to use the padding. loss = losses.sum(0).mean(-1).sum(-1) / batch["input_lens"].to(device) return loss def compute_loss( params: AttributeDict, model: Union[nn.Module, DDP], sp: spm.SentencePieceProcessor, batch: dict, is_training: bool, ) -> Tuple[Tensor, MetricsTracker]: """ Compute RNN-T loss given the model and its inputs. Args: params: Parameters for training. See :func:`get_params`. model: The model for training. It is an instance of Conformer in our case. batch: A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` for the content in it. is_training: True for training. False for validation. When it is True, this function enables autograd during computation; when it is False, it disables autograd. """ device = model.device if isinstance(model, DDP) else next(model.parameters()).device feature = batch["inputs"].to(device) feature_lens = batch["input_lens"].to(device) # at entry, feature is (N, T, C) assert feature.ndim == 3 # The dataloader returns text as a list of cuts, each of which is a list of channel # text. We flatten this to a list where all channels are together, i.e., it looks like # [utt1_ch1, utt2_ch1, ..., uttN_ch1, utt1_ch2, ...., uttN,ch2]. text = [val for tup in zip(*batch["text"]) for val in tup] assert len(text) == len(feature) * params.num_channels # Convert all channel texts to token IDs and create a ragged tensor. y = sp.encode(text, out_type=int) y = k2.RaggedTensor(y).to(device) batch_idx_train = params.batch_idx_train warm_step = params.model_warm_step with torch.set_grad_enabled(is_training): (simple_loss, pruned_loss, ctc_loss, x_masked) = model( x=feature, x_lens=feature_lens, y=y, prune_range=params.prune_range, am_scale=params.am_scale, lm_scale=params.lm_scale, reduction="none", subsampling_factor=params.subsampling_factor, ) simple_loss_is_finite = torch.isfinite(simple_loss) pruned_loss_is_finite = torch.isfinite(pruned_loss) ctc_loss_is_finite = torch.isfinite(ctc_loss) # Compute HEAT loss if is_training and params.heat_loss_scale > 0.0: heat_loss = compute_heat_loss( x_masked, batch, num_channels=params.num_channels ) else: heat_loss = torch.tensor(0.0, device=device) heat_loss_is_finite = torch.isfinite(heat_loss) is_finite = ( simple_loss_is_finite & pruned_loss_is_finite & ctc_loss_is_finite & heat_loss_is_finite ) if not torch.all(is_finite): # logging.info( # "Not all losses are finite!\n" # f"simple_losses: {simple_loss}\n" # f"pruned_losses: {pruned_loss}\n" # f"ctc_losses: {ctc_loss}\n" # f"heat_losses: {heat_loss}\n" # ) # display_and_save_batch(batch, params=params, sp=sp) simple_loss = simple_loss[simple_loss_is_finite] pruned_loss = pruned_loss[pruned_loss_is_finite] ctc_loss = ctc_loss[ctc_loss_is_finite] heat_loss = heat_loss[heat_loss_is_finite] # If either all simple_loss or pruned_loss is inf or nan, # we stop the training process by raising an exception if ( torch.all(~simple_loss_is_finite) or torch.all(~pruned_loss_is_finite) or torch.all(~ctc_loss_is_finite) or torch.all(~heat_loss_is_finite) ): raise ValueError( "There are too many utterances in this batch " "leading to inf or nan losses." ) simple_loss_sum = simple_loss.sum() pruned_loss_sum = pruned_loss.sum() ctc_loss_sum = ctc_loss.sum() heat_loss_sum = heat_loss.sum() s = params.simple_loss_scale # take down the scale on the simple loss from 1.0 at the start # to params.simple_loss scale by warm_step. simple_loss_scale = ( s if batch_idx_train >= warm_step else 1.0 - (batch_idx_train / warm_step) * (1.0 - s) ) pruned_loss_scale = ( 1.0 if batch_idx_train >= warm_step else 0.1 + 0.9 * (batch_idx_train / warm_step) ) loss = ( simple_loss_scale * simple_loss_sum + pruned_loss_scale * pruned_loss_sum + params.ctc_loss_scale * ctc_loss_sum + params.heat_loss_scale * heat_loss_sum ) assert loss.requires_grad == is_training info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") # info["frames"] is an approximate number for two reasons: # (1) The acutal subsampling factor is ((lens - 1) // 2 - 1) // 2 # (2) If some utterances in the batch lead to inf/nan loss, they # are filtered out. info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa info["utterances"] = feature.size(0) # averaged input duration in frames over utterances info["utt_duration"] = feature_lens.sum().item() # averaged padding proportion over utterances info["utt_pad_proportion"] = ( ((feature.size(1) - feature_lens) / feature.size(1)).sum().item() ) # Note: We use reduction=sum while computing the loss. info["loss"] = loss.detach().cpu().item() info["simple_loss"] = simple_loss_sum.detach().cpu().item() info["pruned_loss"] = pruned_loss_sum.detach().cpu().item() if params.ctc_loss_scale > 0.0: info["ctc_loss"] = ctc_loss_sum.detach().cpu().item() if params.heat_loss_scale > 0.0: info["heat_loss"] = heat_loss_sum.detach().cpu().item() return loss, info def compute_validation_loss( params: AttributeDict, model: Union[nn.Module, DDP], sp: spm.SentencePieceProcessor, valid_dl: torch.utils.data.DataLoader, world_size: int = 1, ) -> MetricsTracker: """Run the validation process.""" model.eval() tot_loss = MetricsTracker() for batch_idx, batch in enumerate(valid_dl): loss, loss_info = compute_loss( params=params, model=model, sp=sp, batch=batch, is_training=False, ) assert loss.requires_grad is False tot_loss = tot_loss + loss_info if world_size > 1: tot_loss.reduce(loss.device) loss_value = tot_loss["loss"] / tot_loss["frames"] if loss_value < params.best_valid_loss: params.best_valid_epoch = params.cur_epoch params.best_valid_loss = loss_value return tot_loss def train_one_epoch( params: AttributeDict, model: Union[nn.Module, DDP], optimizer: torch.optim.Optimizer, scheduler: LRSchedulerType, sp: spm.SentencePieceProcessor, train_dl: torch.utils.data.DataLoader, valid_dl: torch.utils.data.DataLoader, scaler: GradScaler, model_avg: Optional[nn.Module] = None, tb_writer: Optional[SummaryWriter] = None, world_size: int = 1, rank: int = 0, ) -> None: """Train the model for one epoch. The training loss from the mean of all frames is saved in `params.train_loss`. It runs the validation process every `params.valid_interval` batches. Args: params: It is returned by :func:`get_params`. model: The model for training. optimizer: The optimizer we are using. scheduler: The learning rate scheduler, we call step() every step. train_dl: Dataloader for the training dataset. valid_dl: Dataloader for the validation dataset. scaler: The scaler used for mix precision training. model_avg: The stored model averaged from the start of training. tb_writer: Writer to write log messages to tensorboard. world_size: Number of nodes in DDP training. If it is 1, DDP is disabled. rank: The rank of the node in DDP training. If no DDP is used, it should be set to 0. """ torch.cuda.empty_cache() model.train() tot_loss = MetricsTracker() cur_batch_idx = params.get("cur_batch_idx", 0) for batch_idx, batch in enumerate(train_dl): if batch_idx < cur_batch_idx: continue cur_batch_idx = batch_idx params.batch_idx_train += 1 batch_size = batch["inputs"].shape[0] try: with torch_autocast(enabled=params.use_fp16): loss, loss_info = compute_loss( params=params, model=model, sp=sp, batch=batch, is_training=True, ) # summary stats tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info # NOTE: We use reduction==sum and loss is computed over utterances # in the batch and there is no normalization to it so far. scaler.scale(loss).backward() set_batch_count(model, params.batch_idx_train) scheduler.step_batch(params.batch_idx_train) scaler.step(optimizer) scaler.update() optimizer.zero_grad() except: # noqa display_and_save_batch(batch, params=params, sp=sp) raise if params.print_diagnostics and batch_idx == 5: return if ( rank == 0 and params.batch_idx_train > 0 and params.batch_idx_train % params.average_period == 0 ): update_averaged_model( params=params, model_cur=model, model_avg=model_avg, ) if ( params.batch_idx_train > 0 and params.batch_idx_train % params.save_every_n == 0 ): params.cur_batch_idx = batch_idx save_checkpoint_with_global_batch_idx( out_dir=params.exp_dir, global_batch_idx=params.batch_idx_train, model=model, model_avg=model_avg, params=params, optimizer=optimizer, scheduler=scheduler, sampler=train_dl.sampler, scaler=scaler, rank=rank, ) del params.cur_batch_idx remove_checkpoints( out_dir=params.exp_dir, topk=params.keep_last_k, rank=rank, ) if batch_idx % 100 == 0 and params.use_fp16: # If the grad scale was less than 1, try increasing it. The _growth_interval # of the grad scaler is configurable, but we can't configure it to have different # behavior depending on the current grad scale. cur_grad_scale = scaler._scale.item() if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0): scaler.update(cur_grad_scale * 2.0) if cur_grad_scale < 0.01: logging.warning(f"Grad scale is small: {cur_grad_scale}") if cur_grad_scale < 1.0e-05: raise_grad_scale_is_too_small_error(cur_grad_scale) if batch_idx % params.log_interval == 0: cur_lr = scheduler.get_last_lr()[0] cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0 logging.info( f"Epoch {params.cur_epoch}, " f"batch {batch_idx}, loss[{loss_info}], " f"tot_loss[{tot_loss}], batch size: {batch_size}, " f"lr: {cur_lr:.2e}, " + (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "") ) if tb_writer is not None: tb_writer.add_scalar( "train/learning_rate", cur_lr, params.batch_idx_train ) loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if params.use_fp16: tb_writer.add_scalar( "train/grad_scale", cur_grad_scale, params.batch_idx_train ) if batch_idx % params.valid_interval == 0 and not params.print_diagnostics: logging.info("Computing validation loss") valid_info = compute_validation_loss( params=params, model=model, sp=sp, valid_dl=valid_dl, world_size=world_size, ) model.train() logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") logging.info( f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" ) if tb_writer is not None: valid_info.write_summary( tb_writer, "train/valid_", params.batch_idx_train ) loss_value = tot_loss["loss"] / tot_loss["frames"] params.train_loss = loss_value if params.train_loss < params.best_train_loss: params.best_train_epoch = params.cur_epoch params.best_train_loss = params.train_loss def run(rank, world_size, args): """ Args: rank: It is a value between 0 and `world_size-1`, which is passed automatically by `mp.spawn()` in :func:`main`. The node with rank 0 is responsible for saving checkpoint. world_size: Number of GPUs for DDP training. args: The return value of get_parser().parse_args() """ params = get_params() params.update(vars(args)) fix_random_seed(params.seed) if world_size > 1: setup_dist(rank, world_size, params.master_port) setup_logger(f"{params.exp_dir}/log/log-train") logging.info("Training started") if args.tensorboard and rank == 0: tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") else: tb_writer = None device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", rank) logging.info(f"Device: {device}") sp = spm.SentencePieceProcessor() sp.load(params.bpe_model) # is defined in local/train_bpe_model.py params.blank_id = sp.piece_to_id("") params.vocab_size = sp.get_piece_size() logging.info(params) logging.info("About to create model") model = get_surt_model(params) num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") assert params.save_every_n >= params.average_period model_avg: Optional[nn.Module] = None if rank == 0: # model_avg is only used with rank 0 model_avg = copy.deepcopy(model) assert params.start_epoch > 0, params.start_epoch checkpoints = load_checkpoint_if_available( params=params, model=model, model_avg=model_avg ) model.to(device) if checkpoints is None and params.model_init_ckpt is not None: logging.info( f"Initializing model with checkpoint from {params.model_init_ckpt}" ) init_ckpt = torch.load(params.model_init_ckpt, map_location=device) model.load_state_dict(init_ckpt["model"], strict=False) if world_size > 1: logging.info("Using DDP") model = DDP(model, device_ids=[rank], find_unused_parameters=True) parameters_names = [] parameters_names.append( [name_param_pair[0] for name_param_pair in model.named_parameters()] ) optimizer = ScaledAdam( model.parameters(), lr=params.base_lr, clipping_scale=2.0, parameters_names=parameters_names, ) scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) if checkpoints and "optimizer" in checkpoints: logging.info("Loading optimizer state dict") optimizer.load_state_dict(checkpoints["optimizer"]) if ( checkpoints and "scheduler" in checkpoints and checkpoints["scheduler"] is not None ): logging.info("Loading scheduler state dict") scheduler.load_state_dict(checkpoints["scheduler"]) if params.print_diagnostics: diagnostic = diagnostics.attach_diagnostics(model) ami = AmiAsrDataModule(args) train_cuts = ami.train_cuts() train_cuts = train_cuts.filter(lambda c: 0.5 <= c.duration <= 35.0) dev_cuts = ami.ami_cuts(split="dev", type="ihm-mix") dev_cuts = dev_cuts.trim_to_supervision_groups(max_pause=0.0).filter( lambda c: 0.2 <= c.duration <= 60.0 ) if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: # We only load the sampler's state dict when it loads a checkpoint # saved in the middle of an epoch sampler_state_dict = checkpoints["sampler"] else: sampler_state_dict = None train_dl = ami.train_dataloaders( train_cuts, sampler_state_dict=sampler_state_dict, ) valid_dl = ami.valid_dataloaders(dev_cuts) scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0) if checkpoints and "grad_scaler" in checkpoints: logging.info("Loading grad scaler state dict") scaler.load_state_dict(checkpoints["grad_scaler"]) for epoch in range(params.start_epoch, params.num_epochs + 1): scheduler.step_epoch(epoch - 1) fix_random_seed(params.seed + epoch - 1) train_dl.sampler.set_epoch(epoch - 1) if tb_writer is not None: tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) params.cur_epoch = epoch train_one_epoch( params=params, model=model, model_avg=model_avg, optimizer=optimizer, scheduler=scheduler, sp=sp, train_dl=train_dl, valid_dl=valid_dl, scaler=scaler, tb_writer=tb_writer, world_size=world_size, rank=rank, ) if params.print_diagnostics: diagnostic.print_diagnostics() break save_checkpoint( params=params, model=model, model_avg=model_avg, optimizer=optimizer, scheduler=scheduler, sampler=train_dl.sampler, scaler=scaler, rank=rank, ) logging.info("Done!") if world_size > 1: torch.distributed.barrier() cleanup_dist() def display_and_save_batch( batch: dict, params: AttributeDict, sp: spm.SentencePieceProcessor, ) -> None: """Display the batch statistics and save the batch into disk. Args: batch: A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` for the content in it. params: Parameters for training. See :func:`get_params`. sp: The BPE model. """ from lhotse.utils import uuid4 filename = f"{params.exp_dir}/batch-{uuid4()}.pt" logging.info(f"Saving batch to {filename}") torch.save(batch, filename) features = batch["inputs"] logging.info(f"features shape: {features.shape}") y = [sp.encode(text_ch) for text_ch in batch["text"]] num_tokens = [sum(len(yi) for yi in y_ch) for y_ch in y] logging.info(f"num tokens: {num_tokens}") def main(): parser = get_parser() AmiAsrDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) world_size = args.world_size assert world_size >= 1 if world_size > 1: mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) else: run(rank=0, world_size=1, args=args) torch.set_num_threads(1) torch.set_num_interop_threads(1) torch.multiprocessing.set_sharing_strategy("file_system") if __name__ == "__main__": main()