#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail stage=-1 stop_stage=100 dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: build monotonic_align lib" if [ ! -d vits/monotonic_align/build ]; then cd vits/monotonic_align python3 setup.py build_ext --inplace cd ../../ else log "monotonic_align lib already built" fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Download data" # The directory $dl_dir/BZNSYP will contain 3 sub directories: # - PhoneLabeling # - ProsodyLabeling # - Wave # If you have pre-downloaded it to /path/to/BZNSYP, you can create a symlink # # ln -sfv /path/to/BZNSYP $dl_dir/ # touch $dl_dir/BZNSYP/.completed # if [ ! -d $dl_dir/BZNSYP ]; then lhotse download baker-zh $dl_dir fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare baker-zh manifest" # We assume that you have downloaded the baker corpus # to $dl_dir/BZNSYP mkdir -p data/manifests if [ ! -e data/manifests/.baker.done ]; then lhotse prepare baker-zh $dl_dir/BZNSYP data/manifests touch data/manifests/.baker.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute spectrogram for baker (may take 3 minutes)" mkdir -p data/spectrogram if [ ! -e data/spectrogram/.baker.done ]; then ./local/compute_spectrogram_baker.py touch data/spectrogram/.baker.done fi if [ ! -e data/spectrogram/.baker-validated.done ]; then log "Validating data/spectrogram for baker" python3 ./local/validate_manifest.py \ data/spectrogram/baker_zh_cuts_all.jsonl.gz touch data/spectrogram/.baker-validated.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Prepare tokens for baker-zh (may take 20 seconds)" if [ ! -e data/spectrogram/.baker_zh_with_token.done ]; then ./local/prepare_tokens_baker_zh.py mv -v data/spectrogram/baker_zh_cuts_with_tokens_all.jsonl.gz \ data/spectrogram/baker_zh_cuts_all.jsonl.gz touch data/spectrogram/.baker_zh_with_token.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Split the baker-zh cuts into train, valid and test sets (may take 25 seconds)" if [ ! -e data/spectrogram/.baker_zh_split.done ]; then lhotse subset --last 600 \ data/spectrogram/baker_zh_cuts_all.jsonl.gz \ data/spectrogram/baker_zh_cuts_validtest.jsonl.gz lhotse subset --first 100 \ data/spectrogram/baker_zh_cuts_validtest.jsonl.gz \ data/spectrogram/baker_zh_cuts_valid.jsonl.gz lhotse subset --last 500 \ data/spectrogram/baker_zh_cuts_validtest.jsonl.gz \ data/spectrogram/baker_zh_cuts_test.jsonl.gz rm data/spectrogram/baker_zh_cuts_validtest.jsonl.gz n=$(( $(gunzip -c data/spectrogram/baker_zh_cuts_all.jsonl.gz | wc -l) - 600 )) lhotse subset --first $n \ data/spectrogram/baker_zh_cuts_all.jsonl.gz \ data/spectrogram/baker_zh_cuts_train.jsonl.gz touch data/spectrogram/.baker_zh_split.done fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Generate token file" if [ ! -e data/tokens.txt ]; then ./local/prepare_token_file.py --tokens data/tokens.txt fi fi