stage=4 # Parameters about model. exp_dir=./vq_pruned_transducer_stateless2/exp/ model_id=hubert_xtralarge_ll60k_finetune_ls960 hubert_model_dir=${exp_dir}/hubert_models hubert_model=${hubert_model_dir}/${model_id}.pt # Parameters about quantizer. num_utts=1000 mem_layer=36 bytes_per_frame=8 enable_refine=True if [ $stage -eq -1 ]; then echo "Download hubert model." mkdir -p ${hubert_model_dir} # For more models refer to: https://github.com/pytorch/fairseq/tree/main/examples/hubert wget -c https://dl.fbaipublicfiles.com/hubert/hubert_xtralarge_ll60k_finetune_ls960.pt -P ${hubert_model_dir} wget -c wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt -P ${hubert_model_dir} fi if [ $stage -eq 0 ]; then # This stage is not directly used by codebook extraction. # It is an method to "prove" that the downloaed hubert model # is inferenced in an correct way if WERs looks like normal. # Expect WERs: # [test-clean-ctc_greedy_search] %WER 2.04% [1075 / 52576, 92 ins, 104 del, 879 sub ] # [test-other-ctc_greedy_search] %WER 3.71% [1942 / 52343, 152 ins, 126 del, 1664 sub ] export CUDA_VISIBLE_DEVICES=7 ./vq_pruned_transducer_stateless2/hubert_decode.py \ --max-duration 10 fi if [ $stage -eq 1 ]; then ./vq_pruned_transducer_stateless2/hubert_memory_embeddings.py \ --max-duration 10 fi if [ $stage -eq 2 ]; then ./vq_pruned_transducer_stateless2/quantizer_train.py fi # CAUTITHON: set quantizer_id MANUALLY when a new quantizer is used. # as it is generated randomly. # quantizer_id="ba401508"; max_duration=40; quantizer_id="3d451334"; max_duration=40; # Train with clean-100 train_subsets="clean-100" # Or if full-libri speech is needed: # train_subsets="clean-100 clean-360 other-500" # In stage 4, each split part needs a gpu to extract codebook indexes. # So use a larger num_jobs if more GPUs are available. num_jobs=2 manifests_dir=vq_pruned_transducer_stateless2/exp/manifests/ if [ $stage -eq 3 ]; then for subset in ${train_subsets}; do echo $subset split_dir=$manifests_dir/split${num_jobs}/$subset/ mkdir -p $split_dir lhotse split $num_jobs data/fbank/cuts_train-$subset.json.gz $split_dir done fi if [ $stage -eq 4 ]; then refine_iter=5 extract_codebook_index(){ # When I testing this code, gpu 6 and 7 are available, # So the CUDA_VISIBLE_DEVICES is (1 + 5) for job 0 # and (2 + 5) for job 1 # Note: order of split manfiests is 1-based, while gpu is 0-based. export CUDA_VISIBLE_DEVICES=`(expr $1 + 5)` ./vq_pruned_transducer_stateless2/hubert_code_indices.py \ --num-splits $num_jobs \ --subset=$2 \ --manifest-idx $1 \ --ori-manifest-dir=$manifests_dir/split${num_jobs}/$subset/ \ --max-duration=$max_duration \ --quantizer-id=${quantizer_id} } # With two pieces of NVIDIA A100 gpus, around three hours needed to process 300 hours training data, # i.e. clean-100 with speed purteb 0.9 and 1.1. for subset in ${train_subsets}; do for manifest_idx in `seq 1 $num_jobs`; do extract_codebook_index $manifest_idx $subset & done wait done wait fi if [ $stage -eq 5 ]; then for subset in ${train_subset}; do cdidx_manifests_dir=`pwd`/data/$model_id-${mem_layer}layer-${quantizer_id}-bytes_per_frame-${bytes_per_frame} combined_list=`find $cdidx_manifests_dir/splits$num_jobs/ -name cuts_train-${sbuset}*` echo $combined_list lhotse combine $combined_list $cdidx_manifests_dir/cuts_train-${subset}.json.gz done fi