#!/usr/bin/env python3 # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script loads ONNX models and uses them to decode waves. You can use the following command to get the exported models: We use the pre-trained model from https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13 as an example to show how to use this file. 1. Download the pre-trained model cd egs/librispeech/ASR repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13 GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url repo=$(basename $repo_url) pushd $repo git lfs pull --include "data/lang_bpe_500/bpe.model" git lfs pull --include "exp/pretrained-iter-1224000-avg-14.pt" cd exp ln -s pretrained-iter-1224000-avg-14.pt epoch-9999.pt popd 2. Export the model to ONNX ./pruned_transducer_stateless3/export-onnx.py \ --bpe-model $repo/data/lang_bpe_500/bpe.model \ --epoch 9999 \ --avg 1 \ --exp-dir $repo/exp/ It will generate the following 3 files inside $repo/exp: - encoder-epoch-9999-avg-1.onnx - decoder-epoch-9999-avg-1.onnx - joiner-epoch-9999-avg-1.onnx 3. Run this file ./pruned_transducer_stateless3/onnx_pretrained.py \ --encoder-model-filename $repo/exp/encoder-epoch-9999-avg-1.onnx \ --decoder-model-filename $repo/exp/decoder-epoch-9999-avg-1.onnx \ --joiner-model-filename $repo/exp/joiner-epoch-9999-avg-1.onnx \ --tokens $repo/data/lang_bpe_500/tokens.txt \ $repo/test_wavs/1089-134686-0001.wav \ $repo/test_wavs/1221-135766-0001.wav \ $repo/test_wavs/1221-135766-0002.wav """ import argparse import logging import math from typing import List, Tuple import k2 import kaldifeat import onnxruntime as ort import torch import torchaudio from torch.nn.utils.rnn import pad_sequence def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--encoder-model-filename", type=str, required=True, help="Path to the encoder onnx model. ", ) parser.add_argument( "--decoder-model-filename", type=str, required=True, help="Path to the decoder onnx model. ", ) parser.add_argument( "--joiner-model-filename", type=str, required=True, help="Path to the joiner onnx model. ", ) parser.add_argument( "--tokens", type=str, help="""Path to tokens.txt.""", ) parser.add_argument( "sound_files", type=str, nargs="+", help="The input sound file(s) to transcribe. " "Supported formats are those supported by torchaudio.load(). " "For example, wav and flac are supported. " "The sample rate has to be 16kHz.", ) parser.add_argument( "--sample-rate", type=int, default=16000, help="The sample rate of the input sound file", ) return parser class OnnxModel: def __init__( self, encoder_model_filename: str, decoder_model_filename: str, joiner_model_filename: str, ): session_opts = ort.SessionOptions() session_opts.inter_op_num_threads = 1 session_opts.intra_op_num_threads = 4 self.session_opts = session_opts self.init_encoder(encoder_model_filename) self.init_decoder(decoder_model_filename) self.init_joiner(joiner_model_filename) def init_encoder(self, encoder_model_filename: str): self.encoder = ort.InferenceSession( encoder_model_filename, sess_options=self.session_opts, providers=["CPUExecutionProvider"], ) def init_decoder(self, decoder_model_filename: str): self.decoder = ort.InferenceSession( decoder_model_filename, sess_options=self.session_opts, providers=["CPUExecutionProvider"], ) decoder_meta = self.decoder.get_modelmeta().custom_metadata_map self.context_size = int(decoder_meta["context_size"]) self.vocab_size = int(decoder_meta["vocab_size"]) logging.info(f"context_size: {self.context_size}") logging.info(f"vocab_size: {self.vocab_size}") def init_joiner(self, joiner_model_filename: str): self.joiner = ort.InferenceSession( joiner_model_filename, sess_options=self.session_opts, providers=["CPUExecutionProvider"], ) joiner_meta = self.joiner.get_modelmeta().custom_metadata_map self.joiner_dim = int(joiner_meta["joiner_dim"]) logging.info(f"joiner_dim: {self.joiner_dim}") def run_encoder( self, x: torch.Tensor, x_lens: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: x: A 3-D tensor of shape (N, T, C) x_lens: A 2-D tensor of shape (N,). Its dtype is torch.int64 Returns: Return a tuple containing: - encoder_out, its shape is (N, T', joiner_dim) - encoder_out_lens, its shape is (N,) """ out = self.encoder.run( [ self.encoder.get_outputs()[0].name, self.encoder.get_outputs()[1].name, ], { self.encoder.get_inputs()[0].name: x.numpy(), self.encoder.get_inputs()[1].name: x_lens.numpy(), }, ) return torch.from_numpy(out[0]), torch.from_numpy(out[1]) def run_decoder(self, decoder_input: torch.Tensor) -> torch.Tensor: """ Args: decoder_input: A 2-D tensor of shape (N, context_size) Returns: Return a 2-D tensor of shape (N, joiner_dim) """ out = self.decoder.run( [self.decoder.get_outputs()[0].name], {self.decoder.get_inputs()[0].name: decoder_input.numpy()}, )[0] return torch.from_numpy(out) def run_joiner( self, encoder_out: torch.Tensor, decoder_out: torch.Tensor ) -> torch.Tensor: """ Args: encoder_out: A 2-D tensor of shape (N, joiner_dim) decoder_out: A 2-D tensor of shape (N, joiner_dim) Returns: Return a 2-D tensor of shape (N, vocab_size) """ out = self.joiner.run( [self.joiner.get_outputs()[0].name], { self.joiner.get_inputs()[0].name: encoder_out.numpy(), self.joiner.get_inputs()[1].name: decoder_out.numpy(), }, )[0] return torch.from_numpy(out) def read_sound_files( filenames: List[str], expected_sample_rate: float ) -> List[torch.Tensor]: """Read a list of sound files into a list 1-D float32 torch tensors. Args: filenames: A list of sound filenames. expected_sample_rate: The expected sample rate of the sound files. Returns: Return a list of 1-D float32 torch tensors. """ ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) assert ( sample_rate == expected_sample_rate ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans def greedy_search( model: OnnxModel, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ) -> List[List[int]]: """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. Args: model: The transducer model. encoder_out: A 3-D tensor of shape (N, T, joiner_dim) encoder_out_lens: A 1-D tensor of shape (N,). Returns: Return the decoded results for each utterance. """ assert encoder_out.ndim == 3, encoder_out.shape assert encoder_out.size(0) >= 1, encoder_out.size(0) packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( input=encoder_out, lengths=encoder_out_lens.cpu(), batch_first=True, enforce_sorted=False, ) blank_id = 0 # hard-code to 0 batch_size_list = packed_encoder_out.batch_sizes.tolist() N = encoder_out.size(0) assert torch.all(encoder_out_lens > 0), encoder_out_lens assert N == batch_size_list[0], (N, batch_size_list) context_size = model.context_size hyps = [[blank_id] * context_size for _ in range(N)] decoder_input = torch.tensor( hyps, dtype=torch.int64, ) # (N, context_size) decoder_out = model.run_decoder(decoder_input) offset = 0 for batch_size in batch_size_list: start = offset end = offset + batch_size current_encoder_out = packed_encoder_out.data[start:end] # current_encoder_out's shape: (batch_size, joiner_dim) offset = end decoder_out = decoder_out[:batch_size] logits = model.run_joiner(current_encoder_out, decoder_out) # logits'shape (batch_size, vocab_size) assert logits.ndim == 2, logits.shape y = logits.argmax(dim=1).tolist() emitted = False for i, v in enumerate(y): if v != blank_id: hyps[i].append(v) emitted = True if emitted: # update decoder output decoder_input = [h[-context_size:] for h in hyps[:batch_size]] decoder_input = torch.tensor( decoder_input, dtype=torch.int64, ) decoder_out = model.run_decoder(decoder_input) sorted_ans = [h[context_size:] for h in hyps] ans = [] unsorted_indices = packed_encoder_out.unsorted_indices.tolist() for i in range(N): ans.append(sorted_ans[unsorted_indices[i]]) return ans @torch.no_grad() def main(): parser = get_parser() args = parser.parse_args() logging.info(vars(args)) model = OnnxModel( encoder_model_filename=args.encoder_model_filename, decoder_model_filename=args.decoder_model_filename, joiner_model_filename=args.joiner_model_filename, ) logging.info("Constructing Fbank computer") opts = kaldifeat.FbankOptions() opts.device = "cpu" opts.frame_opts.dither = 0 opts.frame_opts.snip_edges = False opts.frame_opts.samp_freq = args.sample_rate opts.mel_opts.num_bins = 80 fbank = kaldifeat.Fbank(opts) logging.info(f"Reading sound files: {args.sound_files}") waves = read_sound_files( filenames=args.sound_files, expected_sample_rate=args.sample_rate, ) logging.info("Decoding started") features = fbank(waves) feature_lengths = [f.size(0) for f in features] features = pad_sequence( features, batch_first=True, padding_value=math.log(1e-10), ) feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64) encoder_out, encoder_out_lens = model.run_encoder(features, feature_lengths) hyps = greedy_search( model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, ) s = "\n" symbol_table = k2.SymbolTable.from_file(args.tokens) def token_ids_to_words(token_ids: List[int]) -> str: text = "" for i in token_ids: text += symbol_table[i] return text.replace("▁", " ").strip() for filename, hyp in zip(args.sound_files, hyps): words = token_ids_to_words(hyp) s += f"{filename}:\n{words}\n" logging.info(s) logging.info("Decoding Done") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()