#!/usr/bin/env python3 # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script loads ncnn models and uses them to decode waves. ./pruned_transducer_stateless3/jit_pretrained.py \ --model-dir /path/to/ncnn/model_dir --bpe-model ./data/lang_bpe_500/bpe.model \ /path/to/foo.wav \ /path/to/bar.wav We assume there exist following files in the given `model_dir`: - encoder_jit_trace.ncnn.param - encoder_jit_trace.ncnn.bin - decoder_jit_trace.ncnn.param - decoder_jit_trace.ncnn.bin - joiner_jit_trace.ncnn.param - joiner_jit_trace.ncnn.bin """ import argparse import logging from pathlib import Path from typing import List import ncnn import torch import torchaudio def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--model-dir", type=str, required=True, help="Path to the ncnn models directory. ", ) parser.add_argument( "--bpe-model", type=str, help="""Path to bpe.model.""", ) parser.add_argument( "sound_files", type=str, nargs="+", help="The input sound file(s) to transcribe. " "Supported formats are those supported by torchaudio.load(). " "For example, wav and flac are supported. " "The sample rate has to be 16kHz.", ) parser.add_argument( "--sample-rate", type=int, default=16000, help="The sample rate of the input sound file", ) parser.add_argument( "--context-size", type=int, default=2, help="Context size of the decoder model", ) return parser def read_sound_files( filenames: List[str], expected_sample_rate: float ) -> List[torch.Tensor]: """Read a list of sound files into a list 1-D float32 torch tensors. Args: filenames: A list of sound filenames. expected_sample_rate: The expected sample rate of the sound files. Returns: Return a list of 1-D float32 torch tensors. """ ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) assert sample_rate == expected_sample_rate, ( f"expected sample rate: {expected_sample_rate}. " f"Given: {sample_rate}" ) # We use only the first channel ans.append(wave[0]) return ans @torch.no_grad() def main(): parser = get_parser() args = parser.parse_args() logging.info(vars(args)) model_dir = Path(args.model_dir) encoder_param = model_dir / "encoder_jit_trace.ncnn.param" encoder_bin = model_dir / "encoder_jit_trace.ncnn.bin" decoder_param = model_dir / "decoder_jit_trace.ncnn.param" decoder_bin = model_dir / "decoder_jit_trace.ncnn.bin" joiner_param = model_dir / "joiner_jit_trace.ncnn.param" joiner_bin = model_dir / "joiner_jit_trace.ncnn.bin" assert encoder_param.is_file() assert encoder_bin.is_file() assert decoder_param.is_file() assert decoder_bin.is_file() assert joiner_param.is_file() assert joiner_bin.is_file() encoder = ncnn.Net() decoder = ncnn.Net() joiner = ncnn.Net() # encoder.load_param(str(encoder_param)) # not working yet # decoder.load_param(str(decoder_param)) joiner.load_param(str(joiner_param)) encoder.clear() decoder.clear() joiner.clear() logging.info("Decoding Done") if __name__ == "__main__": formatter = ( "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" ) logging.basicConfig(format=formatter, level=logging.INFO) main()