#!/usr/bin/env python3 # Copyright 2023 Xiaomi Corp. (authors: Daniel Povey) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import random import torch from torch import nn, Tensor class Decoder(nn.Module): """ """ def __init__(self, embed_dim: int, vocab_size: int): """ A 'decoder' that computes the probability of symbols in a language modeling task. """ super().__init__() self.out_proj = nn.Linear(embed_dim, vocab_size) def forward(self, labels: Tensor, encoder_embed: Tensor) -> Tensor: """ Compute log-probs. Args: labels: the labels, a Tensor of integer type of shape (batch_size, seq_len); encoder_embed: the embeddings from the encoder, of shape (seq_len, batch_size, embed_dim) Returns: returns the log-probs for each symbol, in a Tensor of shape (batch_size, seq_len). """ (batch_size, seq_len) = labels.shape (num_chunks, _batch_size, embed_dim) = encoder_embed.shape assert batch_size == _batch_size x = self.out_proj(encoder_embed) x = x.transpose(0, 1) # x: (batch_size, seq_len, vocab_size) x = x.log_softmax(dim=-1) logprobs = torch.gather(x, dim=-1, index=labels.unsqueeze(-1)).squeeze(-1) # (batch_size, seq_len) return logprobs