#!/usr/bin/env bash set -eou pipefail nj=15 stage=-1 stop_stage=100 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/LibriSpeech # You can find BOOKS.TXT, test-clean, train-clean-360, etc, inside it. # You can download them from https://www.openslr.org/12 # # - $dl_dir/lm # This directory contains the following files downloaded from # http://www.openslr.org/resources/11 # # - 3-gram.pruned.1e-7.arpa.gz # - 3-gram.pruned.1e-7.arpa # - 4-gram.arpa.gz # - 4-gram.arpa # - librispeech-vocab.txt # - librispeech-lexicon.txt # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( 5000 2000 1000 500 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "Stage -1: Download LM" [ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm ./local/download_lm.py --out-dir=$dl_dir/lm fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/LibriSpeech, # you can create a symlink # # ln -sfv /path/to/LibriSpeech $dl_dir/LibriSpeech # if [ ! -d $dl_dir/LibriSpeech/train-other-500 ]; then lhotse download librispeech --full $dl_dir fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/ # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare LibriSpeech manifest" # We assume that you have downloaded the LibriSpeech corpus # to $dl_dir/LibriSpeech mkdir -p data/manifests lhotse prepare librispeech -j $nj $dl_dir/LibriSpeech data/manifests fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for librispeech" mkdir -p data/fbank ./local/compute_fbank_librispeech.py fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" mkdir -p data/fbank ./local/compute_fbank_musan.py fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare phone based lang" lang_dir=data/lang_phone mkdir -p $lang_dir (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | cat - $dl_dir/lm/librispeech-lexicon.txt | sort | uniq > $lang_dir/lexicon.txt if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang.py --lang-dir $lang_dir fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} mkdir -p $lang_dir # We reuse words.txt from phone based lexicon # so that the two can share G.pt later. cp data/lang_phone/words.txt $lang_dir if [ ! -f $lang_dir/transcript_words.txt ]; then log "Generate data for BPE training" files=$( find "$dl_dir/LibriSpeech/train-clean-100" -name "*.trans.txt" find "$dl_dir/LibriSpeech/train-clean-360" -name "*.trans.txt" find "$dl_dir/LibriSpeech/train-other-500" -name "*.trans.txt" ) for f in ${files[@]}; do cat $f | cut -d " " -f 2- done > $lang_dir/transcript_words.txt fi ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/transcript_words.txt if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bpe.py --lang-dir $lang_dir fi done fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Prepare bigram P" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} if [ ! -f $lang_dir/transcript_tokens.txt ]; then ./local/convert_transcript_words_to_tokens.py \ --lexicon $lang_dir/lexicon.txt \ --transcript $lang_dir/transcript_words.txt \ --oov "" \ > $lang_dir/transcript_tokens.txt fi if [ ! -f $lang_dir/P.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order 2 \ -text $lang_dir/transcript_tokens.txt \ -lm $lang_dir/P.arpa fi if [ ! -f $lang_dir/P.fst.txt ]; then python3 -m kaldilm \ --read-symbol-table="$lang_dir/tokens.txt" \ --disambig-symbol='#0' \ --max-order=2 \ $lang_dir/P.arpa > $lang_dir/P.fst.txt fi done fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Prepare G" # We assume you have install kaldilm, if not, please install # it using: pip install kaldilm mkdir -p data/lm if [ ! -f data/lm/G_3_gram.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ $dl_dir/lm/3-gram.pruned.1e-7.arpa > data/lm/G_3_gram.fst.txt fi if [ ! -f data/lm/G_4_gram.fst.txt ]; then # It is used for LM rescoring python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=4 \ $dl_dir/lm/4-gram.arpa > data/lm/G_4_gram.fst.txt fi fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Compile HLG" ./local/compile_hlg.py --lang-dir data/lang_phone for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} ./local/compile_hlg.py --lang-dir $lang_dir done fi