#!/usr/bin/env python3 # Copyright 2022 Johns Hopkins (authors: Amir Hussein) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Usage: (1) greedy search ./pruned_transducer_stateless5/decode.py \ --epoch 28 \ --avg 15 \ --exp-dir ./pruned_transducer_stateless5/exp \ --max-duration 600 \ --decoding-method greedy_search (2) beam search (not recommended) ./pruned_transducer_stateless5/decode.py \ --epoch 28 \ --avg 15 \ --exp-dir ./pruned_transducer_stateless5/exp \ --max-duration 600 \ --decoding-method beam_search \ --beam-size 4 (3) modified beam search ./pruned_transducer_stateless5/decode.py \ --epoch 28 \ --avg 15 \ --exp-dir ./pruned_transducer_stateless5/exp \ --max-duration 600 \ --decoding-method modified_beam_search \ --beam-size 4 (4) fast beam search (one best) ./pruned_transducer_stateless5/decode.py \ --epoch 28 \ --avg 15 \ --exp-dir ./pruned_transducer_stateless5/exp \ --max-duration 600 \ --decoding-method fast_beam_search \ --beam 20.0 \ --max-contexts 8 \ --max-states 64 (5) fast beam search (nbest) ./pruned_transducer_stateless5/decode.py \ --epoch 28 \ --avg 15 \ --exp-dir ./pruned_transducer_stateless5/exp \ --max-duration 600 \ --decoding-method fast_beam_search_nbest \ --beam 20.0 \ --max-contexts 8 \ --max-states 64 \ --num-paths 200 \ --nbest-scale 0.5 (6) fast beam search (nbest oracle WER) ./pruned_transducer_stateless5/decode.py \ --epoch 28 \ --avg 15 \ --exp-dir ./pruned_transducer_stateless5/exp \ --max-duration 600 \ --decoding-method fast_beam_search_nbest_oracle \ --beam 20.0 \ --max-contexts 8 \ --max-states 64 \ --num-paths 200 \ --nbest-scale 0.5 (7) fast beam search (with LG) ./pruned_transducer_stateless5/decode.py \ --epoch 28 \ --avg 15 \ --exp-dir ./pruned_transducer_stateless5/exp \ --max-duration 600 \ --decoding-method fast_beam_search_nbest_LG \ --beam 20.0 \ --max-contexts 8 \ --max-states 64 (8) modified beam search with RNNLM shallow fusion (with LG) ./pruned_transducer_stateless5/decode.py \ --epoch 35 \ --avg 15 \ --exp-dir ./pruned_transducer_stateless5/exp \ --max-duration 600 \ --decoding-method fast_beam_search_nbest_LG \ --beam 4 \ --max-contexts 4 \ --rnn-lm-scale 0.4 \ --rnn-lm-exp-dir /path/to/RNNLM/exp \ --rnn-lm-epoch 99 \ --rnn-lm-avg 1 \ --rnn-lm-num-layers 3 \ --rnn-lm-tie-weights 1 """ import argparse import logging import math import pdb from collections import defaultdict from pathlib import Path from typing import Dict, List, Optional, Tuple from lhotse.qa import validate_cut import k2 import sentencepiece as spm import torch import torch.nn as nn from asr_datamodule import IWSLTDialectSTDataModule from beam_search import ( beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, fast_beam_search_nbest_oracle, fast_beam_search_one_best, greedy_search, greedy_search_batch, modified_beam_search, modified_beam_search_rnnlm_shallow_fusion, ) from train import add_model_arguments, get_params, get_transducer_model from icefall.checkpoint import ( average_checkpoints, average_checkpoints_with_averaged_model, find_checkpoints, load_checkpoint, ) from icefall.lexicon import Lexicon from icefall.rnn_lm.model import RnnLmModel from icefall.utils import ( AttributeDict, setup_logger, store_transcripts, str2bool, write_error_stats, ) LOG_EPS = math.log(1e-10) def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--epoch", type=int, default=30, help="""It specifies the checkpoint to use for decoding. Note: Epoch counts from 1. You can specify --avg to use more checkpoints for model averaging.""", ) parser.add_argument( "--iter", type=int, default=0, help="""If positive, --epoch is ignored and it will use the checkpoint exp_dir/checkpoint-iter.pt. You can specify --avg to use more checkpoints for model averaging. """, ) parser.add_argument( "--avg", type=int, default=15, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch' and '--iter'", ) parser.add_argument( "--use-averaged-model", type=str2bool, default=True, help="Whether to load averaged model. Currently it only supports " "using --epoch. If True, it would decode with the averaged model " "over the epoch range from `epoch-avg` (excluded) to `epoch`." "Actually only the models with epoch number of `epoch-avg` and " "`epoch` are loaded for averaging. ", ) parser.add_argument( "--exp-dir", type=str, default="pruned_transducer_stateless5/exp", help="The experiment dir", ) parser.add_argument( "--bpe-model", type=str, default="data/lang_bpe_ta_1000/bpe.model", help="Path to source data BPE model", ) parser.add_argument( "--bpe-tgt-model", type=str, default="data/lang_bpe_en_1000/bpe.model", help="Path to target data BPE model", ) parser.add_argument( "--lang-dir", type=Path, default="data/ang_bpe_ta_1000", help="The lang dir containing word table and LG graph", ) parser.add_argument( "--lang-tgt-dir", type=Path, default="data/lang_bpe_en_1000", help="The lang dir containing word table and LG graph", ) parser.add_argument( "--decoding-method", type=str, default="greedy_search", help="""Possible values are: - greedy_search - beam_search - modified_beam_search - fast_beam_search - fast_beam_search_LG - fast_beam_search_nbest - fast_beam_search_nbest_oracle - fast_beam_search_nbest_LG - modified_beam_search_rnnlm_shallow_fusion # for rnn lm shallow fusion If you use fast_beam_search_nbest_LG, you have to specify `--lang-dir`, which should contain `LG.pt`. """, ) parser.add_argument( "--beam-size", type=int, default=4, help="""An integer indicating how many candidates we will keep for each frame. Used only when --decoding-method is beam_search or modified_beam_search.""", ) parser.add_argument( "--beam", type=float, default=20.0, help="""A floating point value to calculate the cutoff score during beam search (i.e., `cutoff = max-score - beam`), which is the same as the `beam` in Kaldi. Used only when --decoding-method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle """, ) parser.add_argument( "--ngram-lm-scale", type=float, default=0.01, help=""" Used only when --decoding_method is fast_beam_search_nbest_LG and fast_beam_search_LG. It specifies the scale for n-gram LM scores. """, ) parser.add_argument( "--decode-chunk-size", type=int, default=16, help="The chunk size for decoding (in frames after subsampling)", ) parser.add_argument( "--left-context", type=int, default=64, help="left context can be seen during decoding (in frames after subsampling)", ) parser.add_argument( "--max-contexts", type=int, default=8, help="""Used only when --decoding-method is fast_beam_search_LG, fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) parser.add_argument( "--max-states", type=int, default=64, help="""Used only when --decoding-method is fast_beam_search_LG, fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) parser.add_argument( "--context-size", type=int, default=2, help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", type=int, default=1, help="""Maximum number of symbols per frame. Used only when --decoding_method is greedy_search""", ) parser.add_argument( "--num-paths", type=int, default=200, help="""Number of paths for nbest decoding. Used only when the decoding method is fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) parser.add_argument( "--nbest-scale", type=float, default=0.5, help="""Scale applied to lattice scores when computing nbest paths. Used only when the decoding method is fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) parser.add_argument( "--simulate-streaming", type=str2bool, default=False, help="""Whether to simulate streaming in decoding, this is a good way to test a streaming model. """, ) parser.add_argument( "--rnn-lm-scale", type=float, default=0.0, help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion. It specifies the path to RNN LM exp dir. """, ) parser.add_argument( "--rnn-lm-exp-dir", type=str, default="rnn_lm/exp", help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion. It specifies the path to RNN LM exp dir. """, ) parser.add_argument( "--rnn-lm-epoch", type=int, default=7, help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion. It specifies the checkpoint to use. """, ) parser.add_argument( "--rnn-lm-avg", type=int, default=2, help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion. It specifies the number of checkpoints to average. """, ) parser.add_argument( "--rnn-lm-embedding-dim", type=int, default=2048, help="Embedding dim of the model", ) parser.add_argument( "--rnn-lm-hidden-dim", type=int, default=2048, help="Hidden dim of the model", ) parser.add_argument( "--rnn-lm-num-layers", type=int, default=4, help="Number of RNN layers the model", ) parser.add_argument( "--rnn-lm-tie-weights", type=str2bool, default=False, help="""True to share the weights between the input embedding layer and the last output linear layer """, ) add_model_arguments(parser) return parser def decode_one_batch( params: AttributeDict, model: nn.Module, sp: spm.SentencePieceProcessor, batch: dict, word_table: Optional[k2.SymbolTable] = None, decoding_graph: Optional[k2.Fsa] = None, rnnlm: Optional[RnnLmModel] = None, rnnlm_scale: float = 1.0, ) -> Dict[str, List[List[str]]]: """Decode one batch and return the result in a dict. The dict has the following format: - key: It indicates the setting used for decoding. For example, if greedy_search is used, it would be "greedy_search" If beam search with a beam size of 7 is used, it would be "beam_7" - value: It contains the decoding result. `len(value)` equals to batch size. `value[i]` is the decoding result for the i-th utterance in the given batch. Args: params: It's the return value of :func:`get_params`. model: The neural model. sp: The BPE model. batch: It is the return value from iterating `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation for the format of the `batch`. word_table: The word symbol table. decoding_graph: The decoding graph. Can be either a `k2.trivial_graph` or LG, Used only when --decoding_method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. Returns: Return the decoding result. See above description for the format of the returned dict. """ device = next(model.parameters()).device feature = batch["inputs"] assert feature.ndim == 3 feature = feature.to(device) # at entry, feature is (N, T, C) supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) if params.simulate_streaming: feature_lens += params.left_context feature = torch.nn.functional.pad( feature, pad=(0, 0, 0, params.left_context), value=LOG_EPS, ) encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward( x=feature, x_lens=feature_lens, chunk_size=params.decode_chunk_size, left_context=params.left_context, simulate_streaming=True, ) else: encoder_out, encoder_out_lens = model.encoder( x=feature, x_lens=feature_lens) hyps = [] if ( params.decoding_method == "fast_beam_search" or params.decoding_method == "fast_beam_search_LG" ): hyp_tokens = fast_beam_search_one_best( model=model, decoding_graph=decoding_graph, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, beam=params.beam, max_contexts=params.max_contexts, max_states=params.max_states, ) if params.decoding_method == "fast_beam_search": for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) else: for hyp in hyp_tokens: hyps.append([word_table[i] for i in hyp]) elif params.decoding_method == "fast_beam_search_nbest_LG": hyp_tokens = fast_beam_search_nbest_LG( model=model, decoding_graph=decoding_graph, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, beam=params.beam, max_contexts=params.max_contexts, max_states=params.max_states, num_paths=params.num_paths, nbest_scale=params.nbest_scale, ) for hyp in hyp_tokens: hyps.append([word_table[i] for i in hyp]) elif params.decoding_method == "fast_beam_search_nbest": hyp_tokens = fast_beam_search_nbest( model=model, decoding_graph=decoding_graph, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, beam=params.beam, max_contexts=params.max_contexts, max_states=params.max_states, num_paths=params.num_paths, nbest_scale=params.nbest_scale, ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) elif params.decoding_method == "fast_beam_search_nbest_oracle": hyp_tokens = fast_beam_search_nbest_oracle( model=model, decoding_graph=decoding_graph, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, beam=params.beam, max_contexts=params.max_contexts, max_states=params.max_states, num_paths=params.num_paths, ref_texts=sp.encode(supervisions["text"]), nbest_scale=params.nbest_scale, ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) elif params.decoding_method == "modified_beam_search": hyp_tokens = modified_beam_search( model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, beam=params.beam_size, ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) elif params.decoding_method == "modified_beam_search_rnnlm_shallow_fusion": hyp_tokens = modified_beam_search_rnnlm_shallow_fusion( model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, beam=params.beam_size, sp=sp, rnnlm=rnnlm, rnnlm_scale=rnnlm_scale, ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) else: batch_size = encoder_out.size(0) for i in range(batch_size): # fmt: off encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] # fmt: on if params.decoding_method == "greedy_search": hyp = greedy_search( model=model, encoder_out=encoder_out_i, max_sym_per_frame=params.max_sym_per_frame, ) elif params.decoding_method == "beam_search": hyp = beam_search( model=model, encoder_out=encoder_out_i, beam=params.beam_size, ) else: raise ValueError( f"Unsupported decoding method: {params.decoding_method}" ) hyps.append(sp.decode(hyp).split()) if params.decoding_method == "greedy_search": return {"greedy_search": hyps} elif "fast_beam_search" in params.decoding_method: key = f"beam_{params.beam}_" key += f"max_contexts_{params.max_contexts}_" key += f"max_states_{params.max_states}" if "nbest" in params.decoding_method: key += f"_num_paths_{params.num_paths}_" key += f"nbest_scale_{params.nbest_scale}" if "LG" in params.decoding_method: key += f"_ngram_lm_scale_{params.ngram_lm_scale}" return {key: hyps} else: return {f"beam_size_{params.beam_size}": hyps} def remove_short_and_long_utt(c): # Keep only utterances with duration between 1 second and 20 seconds # # Caution: There is a reason to select 20.0 here. Please see # ../local/display_manifest_statistics.py # # You should use ../local/display_manifest_statistics.py to get # an utterance duration distribution for your dataset to select # the threshold if c.duration < 0.5 or c.duration > 30.0: #logging.warning( # f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" #) return False if c.supervisions == []: return False # In pruned RNN-T, we require that T >= S # where T is the number of feature frames after subsampling # and S is the number of tokens in the utterance # In ./conformer.py, the conv module uses the following expression # for subsamplin return True # def remove_seg(c): # if c.supervisions[0].id != 'fla_0102_1_0B_00107': # return True # else: # return False def decode_dataset( dl: torch.utils.data.DataLoader, params: AttributeDict, model: nn.Module, sp: spm.SentencePieceProcessor, word_table: Optional[k2.SymbolTable] = None, decoding_graph: Optional[k2.Fsa] = None, rnnlm: Optional[RnnLmModel] = None, rnnlm_scale: float = 1.0, ) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: """Decode dataset. Args: dl: PyTorch's dataloader containing the dataset to decode. params: It is returned by :func:`get_params`. model: The neural model. sp: The BPE model. word_table: The word symbol table. decoding_graph: The decoding graph. Can be either a `k2.trivial_graph` or LG, Used only when --decoding_method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. Returns: Return a dict, whose key may be "greedy_search" if greedy search is used, or it may be "beam_7" if beam size of 7 is used. Its value is a list of tuples. Each tuple contains two elements: The first is the reference transcript, and the second is the predicted result. """ num_cuts = 0 try: num_batches = len(dl) except TypeError: num_batches = "?" if params.decoding_method == "greedy_search": log_interval = 50 else: log_interval = 20 results = defaultdict(list) for batch_idx, batch in enumerate(dl): texts = batch["supervisions"]["text"] cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] logging.info(f"Decoding {batch_idx}-th batch") hyps_dict = decode_one_batch( params=params, model=model, sp=sp, decoding_graph=decoding_graph, word_table=word_table, batch=batch, rnnlm=rnnlm, rnnlm_scale=rnnlm_scale, ) for name, hyps in hyps_dict.items(): this_batch = [] assert len(hyps) == len(texts) for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): ref_words = ref_text.split() this_batch.append((cut_id, ref_words, hyp_words)) results[name].extend(this_batch) num_cuts += len(texts) if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" logging.info( f"batch {batch_str}, cuts processed until now is {num_cuts}") return results def save_results( params: AttributeDict, test_set_name: str, results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], ): test_set_wers = dict() for key, results in results_dict.items(): recog_path = ( params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" ) results = sorted(results) store_transcripts(filename=recog_path, texts=results) logging.info(f"The transcripts are stored in {recog_path}") # The following prints out WERs, per-word error statistics and aligned # ref/hyp pairs. errs_filename = ( params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_filename, "w") as f: wer = write_error_stats( f, f"{test_set_name}-{key}", results, enable_log=True ) test_set_wers[key] = wer logging.info("Wrote detailed error stats to {}".format(errs_filename)) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) for key, val in test_set_wers: print("{}\t{}".format(key, val), file=f) s = "\nFor {}, WER of different settings are:\n".format(test_set_name) note = "\tbest for {}".format(test_set_name) for key, val in test_set_wers: s += "{}\t{}{}\n".format(key, val, note) note = "" logging.info(s) @torch.no_grad() def main(): parser = get_parser() IWSLTDialectSTDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) params = get_params() params.update(vars(args)) assert params.decoding_method in ( "greedy_search", "beam_search", "fast_beam_search", "fast_beam_search_LG", "fast_beam_search_nbest", "fast_beam_search_nbest_LG", "fast_beam_search_nbest_oracle", "modified_beam_search", "modified_beam_search_rnnlm_shallow_fusion", ) params.res_dir = params.exp_dir / params.decoding_method if params.iter > 0: params.suffix = f"iter-{params.iter}-avg-{params.avg}" else: params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" if params.simulate_streaming: params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}" params.suffix += f"-left-context-{params.left_context}" if "fast_beam_search" in params.decoding_method: params.suffix += f"-beam-{params.beam}" params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" if "nbest" in params.decoding_method: params.suffix += f"-nbest-scale-{params.nbest_scale}" params.suffix += f"-num-paths-{params.num_paths}" if "LG" in params.decoding_method: params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" elif "beam_search" in params.decoding_method: params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" params.suffix += f"-rnnlm-lm-scale-{params.rnn_lm_scale}" if params.use_averaged_model: params.suffix += "-use-averaged-model" setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") logging.info("Decoding started") device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"Device: {device}") sp = spm.SentencePieceProcessor() sp.load(params.bpe_model) # and are defined in local/train_bpe_model.py params.blank_id = sp.piece_to_id("") params.unk_id = sp.piece_to_id("") params.vocab_size = sp.get_piece_size() if params.simulate_streaming: assert ( params.causal_convolution ), "Decoding in streaming requires causal convolution" logging.info(params) logging.info("About to create model") model = get_transducer_model(params) if not params.use_averaged_model: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict( average_checkpoints(filenames, device=device)) elif params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if i >= 1: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict( average_checkpoints(filenames, device=device)) else: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg + 1 ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg + 1: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) filename_start = filenames[-1] filename_end = filenames[0] logging.info( "Calculating the averaged model over iteration checkpoints" f" from {filename_start} (excluded) to {filename_end}" ) model.to(device) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) else: assert params.avg > 0, params.avg start = params.epoch - params.avg assert start >= 1, start filename_start = f"{params.exp_dir}/epoch-{start}.pt" filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" logging.info( f"Calculating the averaged model over epoch range from " f"{start} (excluded) to {params.epoch}" ) model.to(device) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) model.to(device) model.eval() rnn_lm_model = None rnn_lm_scale = params.rnn_lm_scale if params.decoding_method == "modified_beam_search_rnnlm_shallow_fusion": rnn_lm_model = RnnLmModel( vocab_size=params.vocab_size, embedding_dim=params.rnn_lm_embedding_dim, hidden_dim=params.rnn_lm_hidden_dim, num_layers=params.rnn_lm_num_layers, tie_weights=params.rnn_lm_tie_weights, ) assert params.rnn_lm_avg == 1 load_checkpoint( f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt", rnn_lm_model, ) rnn_lm_model.to(device) rnn_lm_model.eval() if "fast_beam_search" in params.decoding_method: if "LG" in params.decoding_method: lexicon = Lexicon(params.lang_dir) word_table = lexicon.word_table lg_filename = params.lang_dir / "LG.pt" logging.info(f"Loading {lg_filename}") decoding_graph = k2.Fsa.from_dict( torch.load(lg_filename, map_location=device) ) decoding_graph.scores *= params.ngram_lm_scale else: word_table = None decoding_graph = k2.trivial_graph( params.vocab_size - 1, device=device) else: decoding_graph = None word_table = None num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") # we need cut ids to display recognition results. args.return_cuts = True iwslt_ta = IWSLTDialectSTDataModule(args) test_cuts = iwslt_ta.test_cuts() dev_cuts = iwslt_ta.dev_cuts() # lev_test_cuts = lev_test_cuts.filter(remove_short_and_long_utt) # # lev_test_cuts = lev_test_cuts.filter(remove_seg) # gulf_test_cuts = gulf_test_cuts.filter(remove_short_and_long_utt) # egy_test_cuts = egy_test_cuts.filter(remove_short_and_long_utt) # egy_h5_cuts = egy_sup_cuts.filter(remove_short_and_long_utt) # egy_sup_cuts = egy_h5_cuts.filter(remove_short_and_long_utt) test_dl = iwslt_ta.test_dataloaders(test_cuts) dev_dl = iwslt_ta.test_dataloaders(dev_cuts) test_sets = ["test", "dev"] test_all_dl = [test_dl, dev_dl] for test_set, test_dl in zip(test_sets, test_all_dl): results_dict = decode_dataset( dl=test_dl, params=params, model=model, sp=sp, word_table=word_table, decoding_graph=decoding_graph, rnnlm=rnn_lm_model, rnnlm_scale=rnn_lm_scale, ) save_results( params=params, test_set_name=test_set, results_dict=results_dict, ) logging.info("Done!") if __name__ == "__main__": main()