#!/usr/bin/env bash set -eou pipefail nj=20 stage=-1 stop_stage=100 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/spgispeech # You can find train.csv, val.csv, train, and val in this directory, which belong # to the SPGISpeech dataset. # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( 500 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/spgispeech, # you can create a symlink # # ln -sfv /path/to/spgispeech $dl_dir/spgispeech # if [ ! -d $dl_dir/spgispeech/train.csv ]; then lhotse download spgispeech $dl_dir fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/ # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare SPGISpeech manifest (may take ~1h)" # We assume that you have downloaded the SPGISpeech corpus # to $dl_dir/spgispeech. We perform text normalization for the transcripts. mkdir -p data/manifests lhotse prepare spgispeech -j $nj --normalize-text $dl_dir/spgispeech data/manifests fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests lhotse combine data/manifests/recordings_{music,speech,noise}.json data/manifests/recordings_musan.jsonl.gz lhotse cut simple -r data/manifests/recordings_musan.jsonl.gz data/manifests/cuts_musan_raw.jsonl.gz fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Split train into train and dev and create cut sets." python local/prepare_splits.py fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank features for spgispeech dev and val" mkdir -p data/fbank python local/compute_fbank_spgispeech.py --test fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Compute fbank features for train" mkdir -p data/fbank python local/compute_fbank_spgispeech.py --train --num-splits 20 log "Combine features from train splits (may take ~1h)" if [ ! -f data/manifests/cuts_train.jsonl.gz ]; then pieces=$(find data/manifests -name "cuts_train_[0-9]*.jsonl.gz") lhotse combine $pieces data/manifests/cuts_train.jsonl.gz fi gunzip -c data/manifests/train_cuts.jsonl.gz | shuf | gzip -c > data/manifests/train_cuts_shuf.jsonl.gz fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Compute fbank features for musan" mkdir -p data/fbank python local/compute_fbank_musan.py fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Dump transcripts for LM training" mkdir -p data/lm gunzip -c data/manifests/cuts_train_raw.jsonl.gz \ | jq '.supervisions[0].text' \ | sed 's:"::g' \ > data/lm/transcript_words.txt fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Prepare BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} mkdir -p $lang_dir # Add special words to words.txt echo " 0" > $lang_dir/words.txt echo "!SIL 1" >> $lang_dir/words.txt echo "[UNK] 2" >> $lang_dir/words.txt # Add regular words to words.txt gunzip -c data/manifests/cuts_train_raw.jsonl.gz \ | jq '.supervisions[0].text' \ | sed 's:"::g' \ | sed 's: :\n:g' \ | sort \ | uniq \ | sed '/^$/d' \ | awk '{print $0,NR+2}' \ >> $lang_dir/words.txt # Add remaining special word symbols expected by LM scripts. num_words=$(cat $lang_dir/words.txt | wc -l) echo " ${num_words}" >> $lang_dir/words.txt num_words=$(cat $lang_dir/words.txt | wc -l) echo " ${num_words}" >> $lang_dir/words.txt num_words=$(cat $lang_dir/words.txt | wc -l) echo "#0 ${num_words}" >> $lang_dir/words.txt ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript data/lm/transcript_words.txt if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bpe.py --lang-dir $lang_dir fi done fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Train LM" lm_dir=data/lm if [ ! -f $lm_dir/G.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order 3 \ -text $lm_dir/transcript_words.txt \ -lm $lm_dir/G.arpa fi if [ ! -f $lm_dir/G_3_gram.fst.txt ]; then python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ $lm_dir/G.arpa > $lm_dir/G_3_gram.fst.txt fi fi if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then log "Stage 10: Compile HLG" ./local/compile_hlg.py --lang-dir data/lang_phone for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} ./local/compile_hlg.py --lang-dir $lang_dir done fi