#!/usr/bin/env python3 # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script loads ONNX models and uses them to decode waves. You can use the following command to get the exported models: ./lstm_transducer_stateless2/export.py \ --exp-dir ./lstm_transducer_stateless2/exp \ --bpe-model data/lang_bpe_500/bpe.model \ --epoch 20 \ --avg 10 \ --onnx 1 Usage of this script: ./lstm_transducer_stateless2/onnx-streaming-decode.py \ --encoder-model-filename ./lstm_transducer_stateless2/exp/encoder.onnx \ --decoder-model-filename ./lstm_transducer_stateless2/exp/decoder.onnx \ --joiner-model-filename ./lstm_transducer_stateless2/exp/joiner.onnx \ --joiner-encoder-proj-model-filename ./lstm_transducer_stateless2/exp/joiner_encoder_proj.onnx \ --joiner-decoder-proj-model-filename ./lstm_transducer_stateless2/exp/joiner_decoder_proj.onnx \ --bpe-model ./data/lang_bpe_500/bpe.model \ /path/to/foo.wav \ /path/to/bar.wav """ import argparse import logging from typing import List, Optional, Tuple from icefall import is_module_available if not is_module_available("onnxruntime"): raise ValueError("Please 'pip install onnxruntime' first.") import onnxruntime as ort import sentencepiece as spm import torch import torchaudio from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature def get_args(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--bpe-model-filename", type=str, help="Path to bpe.model", ) parser.add_argument( "--encoder-model-filename", type=str, required=True, help="Path to the encoder onnx model. ", ) parser.add_argument( "--decoder-model-filename", type=str, required=True, help="Path to the decoder onnx model. ", ) parser.add_argument( "--joiner-model-filename", type=str, required=True, help="Path to the joiner onnx model. ", ) parser.add_argument( "--joiner-encoder-proj-model-filename", type=str, required=True, help="Path to the joiner encoder_proj onnx model. ", ) parser.add_argument( "--joiner-decoder-proj-model-filename", type=str, required=True, help="Path to the joiner decoder_proj onnx model. ", ) parser.add_argument( "--bpe-model", type=str, help="""Path to bpe.model.""", ) parser.add_argument( "sound_filename", type=str, help="The input sound file(s) to transcribe. " "Supported formats are those supported by torchaudio.load(). " "For example, wav and flac are supported. " "The sample rate has to be 16kHz.", ) parser.add_argument( "--sample-rate", type=int, default=16000, help="The sample rate of the input sound file", ) parser.add_argument( "--context-size", type=int, default=2, help="Context size of the decoder model", ) return parser.parse_args() def read_sound_files( filenames: List[str], expected_sample_rate: float ) -> List[torch.Tensor]: """Read a list of sound files into a list 1-D float32 torch tensors. Args: filenames: A list of sound filenames. expected_sample_rate: The expected sample rate of the sound files. Returns: Return a list of 1-D float32 torch tensors. """ ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) assert ( sample_rate == expected_sample_rate ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans class Model: def __init__(self, args): session_opts = ort.SessionOptions() session_opts.inter_op_num_threads = 5 session_opts.intra_op_num_threads = 5 self.session_opts = session_opts self.init_encoder(args) self.init_decoder(args) self.init_joiner(args) self.init_joiner_encoder_proj(args) self.init_joiner_decoder_proj(args) def init_encoder(self, args): self.encoder = ort.InferenceSession( args.encoder_model_filename, sess_options=self.session_opts, ) def init_decoder(self, args): self.decoder = ort.InferenceSession( args.decoder_model_filename, sess_options=self.session_opts, ) def init_joiner(self, args): self.joiner = ort.InferenceSession( args.joiner_model_filename, sess_options=self.session_opts, ) def init_joiner_encoder_proj(self, args): self.joiner_encoder_proj = ort.InferenceSession( args.joiner_encoder_proj_model_filename, sess_options=self.session_opts, ) def init_joiner_decoder_proj(self, args): self.joiner_decoder_proj = ort.InferenceSession( args.joiner_decoder_proj_model_filename, sess_options=self.session_opts, ) def run_encoder(self, x, h0, c0) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Args: x: A tensor of shape (N, T, C) h0: A tensor of shape (num_layers, N, proj_size) c0: A tensor of shape (num_layers, N, hidden_size) Returns: Return a tuple containing: - encoder_out: A tensor of shape (N, T', C') - next_h0: A tensor of shape (num_layers, N, proj_size) - next_c0: A tensor of shape (num_layers, N, hidden_size) """ encoder_input_nodes = self.encoder.get_inputs() encoder_out_nodes = self.encoder.get_outputs() x_lens = torch.tensor([x.size(1)], dtype=torch.int64) encoder_out, encoder_out_lens, next_h0, next_c0 = self.encoder.run( [ encoder_out_nodes[0].name, encoder_out_nodes[1].name, encoder_out_nodes[2].name, encoder_out_nodes[3].name, ], { encoder_input_nodes[0].name: x.numpy(), encoder_input_nodes[1].name: x_lens.numpy(), encoder_input_nodes[2].name: h0.numpy(), encoder_input_nodes[3].name: c0.numpy(), }, ) return ( torch.from_numpy(encoder_out), torch.from_numpy(next_h0), torch.from_numpy(next_c0), ) def run_decoder(self, decoder_input: torch.Tensor) -> torch.Tensor: """ Args: decoder_input: A tensor of shape (N, context_size). Its dtype is torch.int64. Returns: Return a tensor of shape (N, 1, decoder_out_dim). """ decoder_input_nodes = self.decoder.get_inputs() decoder_output_nodes = self.decoder.get_outputs() decoder_out = self.decoder.run( [decoder_output_nodes[0].name], { decoder_input_nodes[0].name: decoder_input.numpy(), }, )[0] return self.run_joiner_decoder_proj(torch.from_numpy(decoder_out).squeeze(1)) def run_joiner( self, projected_encoder_out: torch.Tensor, projected_decoder_out: torch.Tensor, ) -> torch.Tensor: """ Args: projected_encoder_out: A tensor of shape (N, joiner_dim) projected_decoder_out: A tensor of shape (N, joiner_dim) Returns: Return a tensor of shape (N, vocab_size) """ joiner_input_nodes = self.joiner.get_inputs() joiner_output_nodes = self.joiner.get_outputs() logits = self.joiner.run( [joiner_output_nodes[0].name], { joiner_input_nodes[0].name: projected_encoder_out.numpy(), joiner_input_nodes[1].name: projected_decoder_out.numpy(), }, )[0] return torch.from_numpy(logits) def run_joiner_encoder_proj( self, encoder_out: torch.Tensor, ) -> torch.Tensor: """ Args: encoder_out: A tensor of shape (N, encoder_out_dim) Returns: A tensor of shape (N, joiner_dim) """ projected_encoder_out = self.joiner_encoder_proj.run( [self.joiner_encoder_proj.get_outputs()[0].name], {self.joiner_encoder_proj.get_inputs()[0].name: encoder_out.numpy()}, )[0] return torch.from_numpy(projected_encoder_out) def run_joiner_decoder_proj( self, decoder_out: torch.Tensor, ) -> torch.Tensor: """ Args: decoder_out: A tensor of shape (N, decoder_out_dim) Returns: A tensor of shape (N, joiner_dim) """ projected_decoder_out = self.joiner_decoder_proj.run( [self.joiner_decoder_proj.get_outputs()[0].name], {self.joiner_decoder_proj.get_inputs()[0].name: decoder_out.numpy()}, )[0] return torch.from_numpy(projected_decoder_out) def create_streaming_feature_extractor() -> OnlineFeature: """Create a CPU streaming feature extractor. At present, we assume it returns a fbank feature extractor with fixed options. In the future, we will support passing in the options from outside. Returns: Return a CPU streaming feature extractor. """ opts = FbankOptions() opts.device = "cpu" opts.frame_opts.dither = 0 opts.frame_opts.snip_edges = False opts.frame_opts.samp_freq = 16000 opts.mel_opts.num_bins = 80 return OnlineFbank(opts) def greedy_search( model: Model, encoder_out: torch.Tensor, decoder_out: Optional[torch.Tensor] = None, hyp: Optional[List[int]] = None, ): assert encoder_out.ndim == 2 assert encoder_out.shape[0] == 1, "TODO: support batch_size > 1" context_size = 2 blank_id = 0 if decoder_out is None: assert hyp is None, hyp hyp = [blank_id] * context_size decoder_input = torch.tensor([hyp], dtype=torch.int64) # (1, context_size) decoder_out = model.run_decoder(decoder_input) else: assert decoder_out.shape[0] == 1 assert hyp is not None, hyp projected_encoder_out = model.run_joiner_encoder_proj(encoder_out) joiner_out = model.run_joiner(projected_encoder_out, decoder_out) y = joiner_out.squeeze(0).argmax(dim=0).item() if y != blank_id: hyp.append(y) decoder_input = hyp[-context_size:] decoder_input = torch.tensor([decoder_input], dtype=torch.int64) decoder_out = model.run_decoder(decoder_input) return hyp, decoder_out def main(): args = get_args() logging.info(vars(args)) model = Model(args) sound_file = args.sound_filename sample_rate = 16000 sp = spm.SentencePieceProcessor() sp.load(args.bpe_model_filename) logging.info("Constructing Fbank computer") online_fbank = create_streaming_feature_extractor() logging.info(f"Reading sound files: {sound_file}") wave_samples = read_sound_files( filenames=[sound_file], expected_sample_rate=sample_rate, )[0] logging.info(wave_samples.shape) num_encoder_layers = 12 batch_size = 1 d_model = 512 rnn_hidden_size = 1024 h0 = torch.zeros(num_encoder_layers, batch_size, d_model) c0 = torch.zeros(num_encoder_layers, batch_size, rnn_hidden_size) hyp = None decoder_out = None num_processed_frames = 0 segment = 9 offset = 4 chunk = 3200 # 0.2 second start = 0 while start < wave_samples.numel(): end = min(start + chunk, wave_samples.numel()) samples = wave_samples[start:end] start += chunk online_fbank.accept_waveform( sampling_rate=sample_rate, waveform=samples, ) while online_fbank.num_frames_ready - num_processed_frames >= segment: frames = [] for i in range(segment): frames.append(online_fbank.get_frame(num_processed_frames + i)) num_processed_frames += offset frames = torch.cat(frames, dim=0).unsqueeze(0) encoder_out, h0, c0 = model.run_encoder(frames, h0, c0) hyp, decoder_out = greedy_search( model, encoder_out.squeeze(0), decoder_out, hyp ) online_fbank.accept_waveform( sampling_rate=sample_rate, waveform=torch.zeros(5000, dtype=torch.float) ) online_fbank.input_finished() while online_fbank.num_frames_ready - num_processed_frames >= segment: frames = [] for i in range(segment): frames.append(online_fbank.get_frame(num_processed_frames + i)) num_processed_frames += offset frames = torch.cat(frames, dim=0).unsqueeze(0) encoder_out, h0, c0 = model.run_encoder(frames, h0, c0) hyp, decoder_out = greedy_search( model, encoder_out.squeeze(0), decoder_out, hyp ) context_size = 2 logging.info(sound_file) logging.info(sp.decode(hyp[context_size:])) if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()