#!/usr/bin/env bash set -eou pipefail nj=15 stage=-1 stop_stage=100 swbd_only=false # We assume dl_dir (download dir) contains the following # directories and files. Most of them can't be downloaded automatically # as they are not publically available and require a license purchased # from the LDC. # # - $dl_dir/{LDC2004S13,LDC2004T19,LDC2005S13,LDC2005T19} # Fisher LDC packages. # # - $dl_dir/LDC97S62 # Switchboard LDC audio package (transcripts are auto-downloaded) # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download mkdir -p $dl_dir . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( 500 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/fisher and /path/to/swbd, # you can create a symlink # # ln -sfv /path/to/fisher $dl_dir/fisher # # TODO: remove LDC_ROOT=/fsx/resources/LDC for pkg in LDC2004S13 LDC2004T19 LDC2005S13 LDC2005T19 LDC97S62; do ln -sfv $LDC_ROOT/$pkg $dl_dir/ done # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/ # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ] && ! $swbd_only; then log "Stage 1: Prepare Fisher manifests" mkdir -p data/manifests/fisher lhotse prepare fisher-english --absolute-paths 1 $dl_dir data/manifests/fisher fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare SWBD manifests" mkdir -p data/manifests/swbd lhotse prepare switchboard --absolute-paths 1 --omit-silence $dl_dir/LDC97S62 data/manifests/swbd fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests lhotse combine data/manifests/recordings_{music,speech,noise}.json data/manifests/recordings_musan.jsonl.gz lhotse cut simple -r data/manifests/recordings_musan.jsonl.gz data/manifests/musan_cuts.jsonl.gz fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Combine Fisher + SBWD manifests" set -x # Combine Fisher and SWBD recordings and supervisions if $swbd_only; then gunzip -c data/manifests/swbd/swbd_recordings.jsonl \ > data/manifests/fisher-swbd_recordings.jsonl.gz gunzip -c data/manifests/swbd/swbd_supervisions.jsonl \ > data/manifests/fisher-swbd_supervisions.jsonl.gz else lhotse combine \ data/manifests/fisher/recordings.jsonl.gz \ data/manifests/swbd/swbd_recordings.jsonl \ data/manifests/fisher-swbd_recordings.jsonl.gz lhotse combine \ data/manifests/fisher/supervisions.jsonl.gz \ data/manifests/swbd/swbd_supervisions.jsonl \ data/manifests/fisher-swbd_supervisions.jsonl.gz fi # Normalize text and remove supervisions that are not useful / hard to handle. python local/normalize_and_filter_supervisions.py \ data/manifests/fisher-swbd_supervisions.jsonl.gz \ data/manifests/fisher-swbd_supervisions_norm.jsonl.gz \ # Create cuts that span whole recording sessions. lhotse cut simple \ -r data/manifests/fisher-swbd_recordings.jsonl.gz \ -s data/manifests/fisher-swbd_supervisions_norm.jsonl.gz \ data/manifests/fisher-swbd_cuts_unshuf.jsonl.gz # Shuffle the cuts (pure bash pipes are fast). # We could technically skip this step but this helps ensure # SWBD is not only seen towards the end of training # (we concatenated it after Fisher). gunzip -c data/manifests/fisher-swbd_cuts_unshuf.jsonl.gz \ | shuf \ | gzip -c \ > data/manifests/fisher-swbd_cuts.jsonl.gz # Create train/dev split -- 20 sessions for dev is about ~2h, should be good. num_cuts="$(gunzip -c data/manifests/fisher-swbd_cuts.jsonl.gz | wc -l)" num_dev_sessions=20 lhotse subset --first $num_dev_sessions \ data/manifests/fisher-swbd_cuts.jsonl.gz \ data/manifests/dev_fisher-swbd_cuts.jsonl.gz lhotse subset --last $((num_cuts-num_dev_sessions)) \ data/manifests/fisher-swbd_cuts.jsonl.gz \ data/manifests/train_fisher-swbd_cuts.jsonl.gz # Finally, split the full-session cuts into one cut per supervision segment. # In case any segments are overlapping we would discard the info about overlaps. # (overlaps are unlikely for this dataset because each cut sees only one channel). lhotse cut trim-to-supervisions \ --discard-overlapping \ data/manifests/train_fisher-swbd_cuts.jsonl.gz \ data/manifests/train_utterances_fisher-swbd_cuts.jsonl.gz lhotse cut trim-to-supervisions \ --discard-overlapping \ data/manifests/dev_fisher-swbd_cuts.jsonl.gz \ data/manifests/dev_utterances_fisher-swbd_cuts.jsonl.gz # Display some statistics about the data. lhotse cut describe data/manifests/train_utterances_fisher-swbd_cuts.jsonl.gz lhotse cut describe data/manifests/dev_utterances_fisher-swbd_cuts.jsonl.gz set +x fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Dump transcripts for LM training" mkdir -p data/lm gunzip -c data/manifests/fisher-swbd_supervisions_norm.jsonl.gz \ | jq '.text' \ | sed 's:"::g' \ > data/lm/transcript_words.txt fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Prepare lexicon using g2p_en" lang_dir=data/lang_phone mkdir -p $lang_dir # Add special words to words.txt echo " 0" > $lang_dir/words.txt echo "!SIL 1" >> $lang_dir/words.txt echo "[UNK] 2" >> $lang_dir/words.txt # Add regular words to words.txt gunzip -c data/manifests/fisher-swbd_supervisions_norm.jsonl.gz \ | jq '.text' \ | sed 's:"::g' \ | sed 's: :\n:g' \ | sort \ | uniq \ | awk '{print $0,NR+2}' \ >> $lang_dir/words.txt # Add remaining special word symbols expected by LM scripts. num_words=$(cat $lang_dir/words.txt | wc -l) echo " ${num_words}" >> $lang_dir/words.txt num_words=$(cat $lang_dir/words.txt | wc -l) echo " ${num_words}" >> $lang_dir/words.txt num_words=$(cat $lang_dir/words.txt | wc -l) echo "#0 ${num_words}" >> $lang_dir/words.txt if [ ! -f $lang_dir/L_disambig.pt ]; then # We discard SWBD's lexicon and just use g2p_en # It was trained on CMUdict and looks it up before # resorting to an LSTM G2P model. pip install g2p_en ./local/prepare_lang_g2pen.py --lang-dir $lang_dir fi fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Prepare BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} mkdir -p $lang_dir # We reuse words.txt from phone based lexicon # so that the two can share G.pt later. cp data/lang_phone/words.txt $lang_dir ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript data/lm/transcript_words.txt if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bpe.py --lang-dir $lang_dir fi done fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Train LM" lm_dir=data/lm if [ ! -f $lm_dir/G.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order 3 \ -text $lm_dir/transcript_words.txt \ -lm $lm_dir/G.arpa fi if [ ! -f $lm_dir/G_3_gram.fst.txt ]; then python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ $lm_dir/G.arpa > $lm_dir/G_3_gram.fst.txt fi fi if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then log "Stage 10: Compile HLG" ./local/compile_hlg.py --lang-dir data/lang_phone for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} ./local/compile_hlg.py --lang-dir $lang_dir done fi