#!/usr/bin/env bash set -eou pipefail stage=3 stop_stage=3 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/SPEECHIO_ASR_ZH00000 # This directory contains the following files downloaded from # https://github.com/SpeechColab/Leaderboard # # - metadata.tsv # - wav # - wav.scp # - trans.txt # dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare speechio manifest" # We assume that you have downloaded the speechio dataset # to $dl_dir mkdir -p data/manifests if [ ! -e data/manifests/.speechio.done ]; then lhotse prepare speechio $dl_dir data/manifests touch data/manifests/.speechio.done fi fi whisper_mel_bins=80 if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Compute whisper fbank for speechio" if [ ! -f data/fbank/.speechio.done ]; then mkdir -p data/fbank ./local/compute_fbank_speechio.py --num-mel-bins ${whisper_mel_bins} --whisper-fbank true touch data/fbank/.speechio.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute kaldi fbank for speechio" if [ ! -f data/fbank/.speechio.kaldi.done ]; then fbank_dir=data/fbank_kaldi mkdir -p $fbank_dir ./local/compute_fbank_speechio.py --fbank-dir $fbank_dir touch data/fbank/.speechio.kaldi.done fi fi