#!/usr/bin/env bash # Prepare script for MLS English ASR recipe in icefall # This recipe uses on-the-fly feature extraction, so it skips manifest # and feature generation steps used in other recipes. # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=15 stage=-1 stop_stage=100 # Configuration for BPE tokenizer vocab_sizes=(2000) # You can add more sizes like (500 1000 2000) for comparison # Directory where dataset will be downloaded dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". mkdir -p data log() { local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "Starting MLS English data preparation" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download MLS English dataset" if [ ! -d $dl_dir/mls_english ]; then if ! git clone https://huggingface.co/datasets/parler-tts/mls_eng $dl_dir/mls_english; then log "Failed to download MLS English dataset" exit 1 fi fi fi mkdir -p data/lang lang_dir=data/lang if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare transcript for BPE training" if [ ! -f $lang_dir/transcript.txt ]; then log "Generating transcripts for BPE training" ./local/utils/generate_transcript.py --lang-dir $lang_dir fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare BPE tokenizer" for vocab_size in ${vocab_sizes[@]}; do log "Training BPE model with vocab_size=${vocab_size}" bpe_dir=data/lang/bpe_${vocab_size} mkdir -p $bpe_dir if [ ! -f $bpe_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $bpe_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/transcript.txt fi done fi log "MLS English data preparation completed successfully"