#!/usr/bin/env python3 # Copyright 2023 Xiaomi Corp. (Author: Liyong Guo) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file computes fbank features of the HI_MIA and HI_MIA_CW dataset. It looks for manifests in the directory data/manifests. The generated fbank features are saved in data/fbank. """ import argparse import logging import os from pathlib import Path import torch from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer from lhotse.recipes.utils import read_manifests_if_cached from icefall.utils import get_executor, str2bool # Torch's multithreaded behavior needs to be disabled or # it wastes a lot of CPU and slow things down. # Do this outside of main() in case it needs to take effect # even when we are not invoking the main (e.g. when spawning subprocesses). torch.set_num_threads(1) torch.set_num_interop_threads(1) def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "--train-set-channel", type=str, default="_7_01", help="""channel of HI_MIA dataset. All channels are used if it is set "all". """, ) parser.add_argument( "--enable-speed-perturb", type=str2bool, default=False, help="""channel of training set. """, ) return parser.parse_args() def compute_fbank_himia( train_set_channel: str = None, enable_speed_perturb: bool = True, ): src_dir = Path("data/manifests") output_dir = Path("data/fbank") num_jobs = min(40, os.cpu_count()) num_mel_bins = 80 if "all" == train_set_channel: dataset_parts = ( "train", "dev", "test", "cw_test", ) else: dataset_parts = ( f"train{train_set_channel}", f"dev{train_set_channel}", f"test{train_set_channel}", "cw_test", ) manifests = read_manifests_if_cached( dataset_parts=dataset_parts, prefix="himia", output_dir=src_dir ) assert manifests is not None extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) with get_executor() as ex: # Initialize the executor only once. for partition, m in manifests.items(): if (output_dir / f"cuts_{partition}.jsonl.gz").is_file(): logging.info(f"{partition} already exists - skipping.") continue logging.info(f"Processing {partition}") cut_set = CutSet.from_manifests( recordings=m["recordings"], supervisions=m["supervisions"], ) if "train" in partition and enable_speed_perturb: cut_set = ( cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) ) cut_set = cut_set.resample(16000) cut_set = cut_set.compute_and_store_features( extractor=extractor, storage_path=f"{output_dir}/feats_{partition}", # when an executor is specified, make more partitions num_jobs=num_jobs if ex is None else 80, executor=ex, storage_type=LilcomHdf5Writer, ) output_file_name = f"cuts_{partition}.jsonl.gz" if "all" != train_set_channel: output_file_name = f"cuts_{partition}{train_set_channel}.jsonl.gz" cut_set.to_file(output_dir / f"{output_file_name}") def main(): formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" args = get_args() logging.basicConfig(format=formatter, level=logging.INFO) compute_fbank_himia( train_set_channel=args.train_set_channel, enable_speed_perturb=args.enable_speed_perturb, ) if __name__ == "__main__": main()