#!/usr/bin/env bash set -eou pipefail nj=15 stage=-1 stop_stage=100 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/xbmu_amdo31 # You can find data, resource, etc, inside it. # You can download them from https://huggingface.co/datasets/syzym/xbmu_amdo31 # # - $dl_dir/lm # This directory contains the following files downloaded from # git lfs install # https://huggingface.co/syzym/xbmu_amdo31_lm # # - tibetan.3-gram.arpa # - tibetan.4-gram.arpa # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( 1000 500 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "stage -1: Download LM" # We assume that you have installed the git-lfs, if not, you could install it # using: `sudo apt-get install git-lfs && git-lfs install` git lfs 1>/dev/null 2>&1 || (echo "please install git-lfs, consider using: sudo apt-get install git-lfs && git-lfs install" && exit 1) if [ ! -f $dl_dir/lm/3-gram.unpruned.arpa ]; then git clone https://huggingface.co/syzym/xbmu_amdo31_lm $dl_dir/lm pushd $dl_dir/lm git lfs pull --include "tibetan.3-gram.arpa" git lfs pull --include "tibetan.4-gram.arpa" popd fi fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/xbmu_amdo31, # you can create a symlink # # ln -sfv /path/to/xbmu_amdo31 $dl_dir/xbmu_amdo31 # if [ ! -f $dl_dir/xbmu_amdo31 ]; then git lfs 1>/dev/null 2>&1 || (echo "please install git-lfs, consider using: sudo apt-get install git-lfs && git-lfs install" && exit 1) lhotse download xbmu-amdo31 $dl_dir fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/ # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare xbmu_amdo31 manifest" # We assume that you have downloaded the xbmu_amdo31 corpus # to $dl_dir/xbmu_amdo31 if [ ! -f data/manifests/.xbmu_amdo31_manifests.done ]; then mkdir -p data/manifests lhotse prepare xbmu-amdo31 $dl_dir/xbmu_amdo31 data/manifests touch data/manifests/.xbmu_amdo31_manifests.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan if [ ! -f data/manifests/.musan_manifests.done ]; then log "It may take 6 minutes" mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests touch data/manifests/.musan_manifests.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for xbmu_amdo31" if [ ! -f data/fbank/.xbmu_amdo31.done ]; then mkdir -p data/fbank ./local/compute_fbank_xbmu_amdo31.py touch data/fbank/.xbmu_amdo31.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" if [ ! -f data/fbank/.msuan.done ]; then mkdir -p data/fbank ./local/compute_fbank_musan.py touch data/fbank/.msuan.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare phone based lang" lang_dir=data/lang_phone mkdir -p $lang_dir (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | cat - $dl_dir/xbmu_amdo31/resource/lexicon.txt | sort | uniq > $lang_dir/lexicon.txt ./local/generate_unique_lexicon.py --lang-dir $lang_dir if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang.py --lang-dir $lang_dir fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} mkdir -p $lang_dir # We reuse words.txt from phone based lexicon # so that the two can share G.pt later. cp data/lang_phone/words.txt $lang_dir if [ ! -f $lang_dir/transcript_words.txt ]; then log "Generate data to train phone based bigram P" xbmu_amdo31_text=$dl_dir/xbmu_amdo31/data/transcript/transcript_clean.txt xbmu_amdo31_train_uid=$dl_dir/xbmu_amdo31/data/transcript/xbmu_amdo31_train_uid find $dl_dir/xbmu_amdo31/data/wav/train -name "*.wav" | sed 's/\.wav//g' | awk -F '-' '{print $NF}' > $xbmu_amdo31_train_uid awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $xbmu_amdo31_train_uid $xbmu_amdo31_text | cut -d " " -f 2- > $lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bpe.py --lang-dir $lang_dir log "Validating $lang_dir/lexicon.txt" ./local/validate_bpe_lexicon.py \ --lexicon $lang_dir/lexicon.txt \ --bpe-model $lang_dir/bpe.model fi done fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Prepare bigram P" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} if [ ! -f $lang_dir/transcript_tokens.txt ]; then ./local/convert_transcript_words_to_tokens.py \ --lexicon $lang_dir/lexicon.txt \ --transcript $lang_dir/transcript_words.txt \ --oov "" \ > $lang_dir/transcript_tokens.txt fi if [ ! -f $lang_dir/P.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order 2 \ -text $lang_dir/transcript_tokens.txt \ -lm $lang_dir/P.arpa fi if [ ! -f $lang_dir/P.fst.txt ]; then python3 -m kaldilm \ --read-symbol-table="$lang_dir/tokens.txt" \ --disambig-symbol='#0' \ --max-order=2 \ $lang_dir/P.arpa > $lang_dir/P.fst.txt fi done fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Prepare G" # We assume you have installed kaldilm, if not, please install # it using: pip install kaldilm mkdir -p data/lm if [ ! -f data/lm/G_3_gram.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ $dl_dir/lm/tibetan.3-gram.arpa > data/lm/G_3_gram.fst.txt fi if [ ! -f data/lm/G_4_gram.fst.txt ]; then # It is used for LM rescoring python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=4 \ $dl_dir/lm/tibetan.4-gram.arpa > data/lm/G_4_gram.fst.txt fi fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Compile HLG" ./local/compile_hlg.py --lang-dir data/lang_phone for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} ./local/compile_hlg.py --lang-dir $lang_dir done fi # Compile LG for RNN-T fast_beam_search decoding if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then log "Stage 10: Compile LG" ./local/compile_lg.py --lang-dir data/lang_phone for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} ./local/compile_lg.py --lang-dir $lang_dir done fi if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then log "Stage 11: Generate LM training data" for vocab_size in ${vocab_sizes[@]}; do log "Processing vocab_size == ${vocab_size}" lang_dir=data/lang_bpe_${vocab_size} out_dir=data/lm_training_bpe_${vocab_size} mkdir -p $out_dir ./local/prepare_lm_training_data.py \ --bpe-model $lang_dir/bpe.model \ --lm-data $dl_dir/lm/lm_train.txt \ --lm-archive $out_dir/lm_data.pt done fi if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then log "Stage 12: Generate LM validation data" for vocab_size in ${vocab_sizes[@]}; do log "Processing vocab_size == ${vocab_size}" out_dir=data/lm_training_bpe_${vocab_size} mkdir -p $out_dir if [ ! -f $out_dir/valid.txt ]; then files=$dl_dir/xbmu_amdo31/data/transcript/dev_text for f in ${files[@]}; do cat $f | cut -d " " -f 2- done > $out_dir/valid.txt fi lang_dir=data/lang_bpe_${vocab_size} ./local/prepare_lm_training_data.py \ --bpe-model $lang_dir/bpe.model \ --lm-data $out_dir/valid.txt \ --lm-archive $out_dir/lm_data-valid.pt done fi if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then log "Stage 13: Generate LM test data" for vocab_size in ${vocab_sizes[@]}; do log "Processing vocab_size == ${vocab_size}" out_dir=data/lm_training_bpe_${vocab_size} mkdir -p $out_dir if [ ! -f $out_dir/test.txt ]; then files=$dl_dir/xbmu_amdo31/data/transcript/test_text cat $f | cut -d " " -f 2- > $out_dir/test.txt fi lang_dir=data/lang_bpe_${vocab_size} ./local/prepare_lm_training_data.py \ --bpe-model $lang_dir/bpe.model \ --lm-data $out_dir/test.txt \ --lm-archive $out_dir/lm_data-test.pt done fi if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then log "Stage 14: Sort LM training data" # Sort LM training data by sentence length in descending order # for ease of training. # # Sentence length equals to the number of BPE tokens # in a sentence. for vocab_size in ${vocab_sizes[@]}; do out_dir=data/lm_training_bpe_${vocab_size} mkdir -p $out_dir ./local/sort_lm_training_data.py \ --in-lm-data $out_dir/lm_data.pt \ --out-lm-data $out_dir/sorted_lm_data.pt \ --out-statistics $out_dir/statistics.txt ./local/sort_lm_training_data.py \ --in-lm-data $out_dir/lm_data-valid.pt \ --out-lm-data $out_dir/sorted_lm_data-valid.pt \ --out-statistics $out_dir/statistics-valid.txt ./local/sort_lm_training_data.py \ --in-lm-data $out_dir/lm_data-test.pt \ --out-lm-data $out_dir/sorted_lm_data-test.pt \ --out-statistics $out_dir/statistics-test.txt done fi