#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -euxo pipefail nj=20 stage=-1 stop_stage=100 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/voxpopuli/raw_audios/$lang/$year # This directory contains *.ogg files with audio downloaded and extracted from archives: # https://dl.fbaipublicfiles.com/voxpopuli/audios/${lang}_${year}.tar # # - Note: the voxpopuli transcripts are downloaded to a ${tmp} folder # as part of `lhotse prepare voxpopuli` from: # https://dl.fbaipublicfiles.com/voxpopuli/annotations/asr/asr_${lang}.tsv.gz # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download #dl_dir=/mnt/matylda6/szoke/EU-ASR/DATA # BUT musan_dir=${dl_dir}/musan #musan_dir=/mnt/matylda2/data/MUSAN # BUT # Choose value from ASR_LANGUAGES: # # [ "en", "de", "fr", "es", "pl", "it", "ro", "hu", "cs", "nl", "fi", "hr", # "sk", "sl", "et", "lt" ] # # See ASR_LANGUAGES in: # https://github.com/lhotse-speech/lhotse/blob/c5f26afd100885b86e4244eeb33ca1986f3fa923/lhotse/recipes/voxpopuli.py#L54C4-L54C4 lang=en task=asr . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/${lang}/lang_bpe_xxx, # data/${lang}/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( # 5000 # 2000 # 1000 500 ) # All files generated by this script are saved in "data/${lang}". # You can safely remove "data/${lang}" and rerun this script to regenerate it. mkdir -p data/${lang} log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" log "musan_dir: $musan_dir" log "task: $task, lang: $lang" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/$release, # you can create a symlink # # ln -sfv /path/to/$release $dl_dir/$release # if [ ! -d $dl_dir/voxpopuli/raw_audios/${lang} ]; then lhotse download voxpopuli --subset $lang $dl_dir/voxpopuli fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/ # if [ ! -d $musan_dir/musan ]; then lhotse download musan $musan_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare VoxPopuli manifest" # We assume that you have downloaded the VoxPopuli corpus # to $dl_dir/voxpopuli if [ ! -e data/manifests/.voxpopuli-${task}-${lang}.done ]; then # Warning : it requires Internet connection (it downloads transcripts to ${tmpdir}) lhotse prepare voxpopuli --task asr --lang $lang -j $nj $dl_dir/voxpopuli data/manifests touch data/manifests/.voxpopuli-${task}-${lang}.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan mkdir -p data/manifests if [ ! -e data/manifests/.musan.done ]; then #lhotse prepare musan $dl_dir/musan data/manifests lhotse prepare musan $musan_dir/musan data/manifests touch data/manifests/.musan.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Preprocess VoxPopuli manifest" mkdir -p data/fbank if [ ! -e data/fbank/.voxpopuli-${task}-${lang}-preprocess_complete ]; then # recordings + supervisions -> cutset ./local/preprocess_voxpopuli.py --task $task --lang $lang \ --use-original-text True touch data/fbank/.voxpopuli-${task}-${lang}-preprocess_complete fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for dev and test subsets of VoxPopuli" mkdir -p data/fbank for dataset in "dev" "test"; do if [ ! -e data/fbank/.voxpopuli-${task}-${lang}-${dataset}.done ]; then ./local/compute_fbank.py --src-dir data/fbank --output-dir data/fbank \ --num-jobs 50 --num-workers ${nj} \ --prefix "voxpopuli-${task}-${lang}" \ --dataset ${dataset} \ --trim-to-supervisions True touch data/fbank/.voxpopuli-${task}-${lang}-${dataset}.done fi done fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Compute fbank for train set of VoxPopuli" if [ ! -e data/fbank/.voxpopuli-${task}-${lang}-train.done ]; then ./local/compute_fbank.py --src-dir data/fbank --output-dir data/fbank \ --num-jobs 100 --num-workers ${nj} \ --prefix "voxpopuli-${task}-${lang}" \ --dataset train \ --trim-to-supervisions True \ --speed-perturb True touch data/fbank/.voxpopuli-${task}-${lang}-train.done fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Validate fbank manifests for VoxPopuli" for dataset in "dev" "test" "train"; do mkdir -p data/fbank/log/ ./local/validate_cutset_manifest.py \ data/fbank/voxpopuli-asr-en_cuts_${dataset}.jsonl.gz \ 2>&1 | tee data/fbank/log/validate_voxpopuli-asr-en_cuts_${dataset}.log done fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Compute fbank for musan" mkdir -p data/fbank if [ ! -e data/fbank/.musan.done ]; then ./local/compute_fbank_musan.py touch data/fbank/.musan.done fi fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Prepare BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size}_${lang} mkdir -p $lang_dir if [ ! -f $lang_dir/transcript_words.txt ]; then log "Generate data for BPE training" file=$( find "data/fbank/voxpopuli-${task}-${lang}_cuts_train.jsonl.gz" ) local/text_from_manifest.py $file >$lang_dir/transcript_words.txt # gunzip -c ${file} | awk -F '"' '{print $30}' > $lang_dir/transcript_words.txt # Ensure space only appears once #sed -i 's/\t/ /g' $lang_dir/transcript_words.txt #sed -i 's/[ ][ ]*/ /g' $lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/words.txt ]; then cat $lang_dir/transcript_words.txt | sed 's/ /\n/g' \ | sort -u | sed '/^$/d' > $lang_dir/words.txt (echo '!SIL'; echo ''; echo ''; ) | cat - $lang_dir/words.txt | sort | uniq | awk ' BEGIN { print " 0"; } { if ($1 == "") { print " is in the vocabulary!" | "cat 1>&2" exit 1; } if ($1 == "") { print " is in the vocabulary!" | "cat 1>&2" exit 1; } printf("%s %d\n", $1, NR); } END { printf("#0 %d\n", NR+1); printf(" %d\n", NR+2); printf(" %d\n", NR+3); }' > $lang_dir/words || exit 1; mv $lang_dir/words $lang_dir/words.txt fi if [ ! -f $lang_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bpe.py --lang-dir $lang_dir log "Validating $lang_dir/lexicon.txt" ./local/validate_bpe_lexicon.py \ --lexicon $lang_dir/lexicon.txt \ --bpe-model $lang_dir/bpe.model fi if [ ! -f $lang_dir/L.fst ]; then log "Converting L.pt to L.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L.pt \ $lang_dir/L.fst fi if [ ! -f $lang_dir/L_disambig.fst ]; then log "Converting L_disambig.pt to L_disambig.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L_disambig.pt \ $lang_dir/L_disambig.fst fi done fi