#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail num_phones=39 # Here we use num_phones=39 for modeling nj=15 stage=-1 stop_stage=100 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/timit # You can find data, train_data.csv, test_data.csv, etc, inside it. # You can download them from https://data.deepai.org/timit.zip # # - $dl_dir/lm # This directory contains the language model(LM) downloaded from # https://huggingface.co/luomingshuang/timit_lm, and the LM is based # on 39 phones. About how to get these LM files, you can know it # from https://github.com/luomingshuang/Train_LM_with_kaldilm. # # - lm_3_gram.arpa # - lm_4_gram.arpa # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download splits_dir=$PWD/splits_dir . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "Stage -1: Download LM" # We assume that you have installed the git-lfs, if not, you could install it # using: `sudo apt-get install git-lfs && git-lfs install` [ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm git clone https://huggingface.co/luomingshuang/timit_lm $dl_dir/lm pushd $dl_dir/lm git lfs pull popd fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/timit, # you can create a symlink # # ln -sfv /path/to/timit $dl_dir/timit # if [ ! -d $dl_dir/timit ]; then lhotse download timit $dl_dir fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/ # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare timit manifest" # We assume that you have downloaded the timit corpus # to $dl_dir/timit mkdir -p data/manifests lhotse prepare timit -p $num_phones -j $nj $dl_dir/timit/data data/manifests fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for timit" mkdir -p data/fbank ./local/compute_fbank_timit.py fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" mkdir -p data/fbank ./local/compute_fbank_musan.py fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare phone based lang" lang_dir=data/lang_phone mkdir -p $lang_dir ./local/prepare_lexicon.py \ --manifests-dir data/manifests \ --lang-dir $lang_dir if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang.py --lang-dir $lang_dir fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare G" # We assume you have installed kaldilm, if not, please install # it using: pip install kaldilm mkdir -p data/lm if [ ! -f data/lm/G_3_gram.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ $dl_dir/lm/lm_3_gram.arpa > data/lm/G_3_gram.fst.txt fi if [ ! -f data/lm/G_4_gram.fst.txt ]; then # It is used for LM rescoring python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=4 \ $dl_dir/lm/lm_4_gram.arpa > data/lm/G_4_gram.fst.txt fi fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Compile HLG" ./local/compile_hlg.py --lang-dir data/lang_phone fi